Skip to main content

Modelling the Background Error Covariance Matrix: Applicability Over the Maritime Continent

  • Chapter
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV)

Abstract

The background error covariance matrix is fundamental to any data assimilation system. Since it cannot be explicitly specified, methods have been developed to estimate and model it. These involve certain assumptions which may be invalid over the Maritime Continent. In this chapter, the applicability of the main methods employed to estimate the background covariance matrix and the validity of the main assumptions in modelling it are explored, particularly for the Maritime Continent context. A brief demonstration of the methods over the region, where applicable, is provided to explore possible limitations in their conceptualisation. The manifestation of the main assumptions in the structures of the background error covariance matrix is also demonstrated using pseudo-single observation experiments. Additional comments are included to highlight areas for further work and echo the call for much needed research on modelling the background error covariance matrix for the Maritime Continent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson JL (2001) An ensemble adjustment Kalman filter for data assimilation. Mon Weather Rev 129(12):2884–2903

    Article  Google Scholar 

  • Ban J, Liu Z, Zhang X, Huang XY, Wang H (2017) Precipitation data assimilation in WRFDA 4D-Var: implementation and application to convection-permitting forecasts over United States. Tellus A 69(1):1368310

    Article  Google Scholar 

  • Bannister RN (2007) Can wavelets improve the representation of forecast error covariances in variational data assimilation? Mon Weather Rev 135(2):387–408

    Article  Google Scholar 

  • Bannister RN (2008a) A review of forecast error covariance statistics in atmospheric variational data assimilation. I: characteristics and measurements of forecast error covariances. Q J R Meteorol Soc 134(637):1951–1970

    Google Scholar 

  • Bannister RN (2008b) A review of forecast error covariance statistics in atmospheric variational data assimilation. II: modelling the forecast error covariance statistics. Q J R Meteorol Soc 134(637):1971–1996

    Google Scholar 

  • Bannister RN (2017) A review of operational methods of variational and ensemble-variational data assimilation. Q J R Meteorol Soc 143(703):607–633

    Article  Google Scholar 

  • Barker DM, Huang W, Guo YR, Bourgeois A (2003) A three-dimensional variational (3DVAR) data assimilation system for use with MM5. NCAR Tech Note 68

    Google Scholar 

  • Barker DM, Huang W, Guo YR, Bourgeois AJ, Xiao QN (2004) A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon Weather Rev 132(4):897–914

    Article  Google Scholar 

  • Barker D, Huang XY, Liu Z, Auligné T, Zhang X, Rugg S et al (2012) The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bull Am Meteorol Soc 93(6):831–843

    Article  Google Scholar 

  • Berre L (2000) Estimation of synoptic and mesoscale forecast error covariances in a limited-area model. Mon Weather Rev 128(3):644–667

    Article  Google Scholar 

  • Berre L, Ştefaănescu SE, Pereira MB (2006) The representation of the analysis effect in three error simulation techniques. Tellus A 58(2):196–209

    Article  Google Scholar 

  • Berre L, Varella H, Desroziers G (2015) Modelling of flow-dependent ensemble-based background-error correlations using a wavelet formulation in 4D-Var at Météo-France. Q J R Meteorol Soc 141(692):2803–2812

    Article  Google Scholar 

  • Birch CE, Webster S, Peatman SC, Parker DJ, Matthews AJ, Li Y et al (2016) Scale interactions between the MJO and the western maritime continent. J Clim 29(7):2471–2492

    Article  Google Scholar 

  • Bishop CH, Etherton BJ, Majumdar SJ (2001) Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon Weather Rev 129(3):420–436

    Google Scholar 

  • Bojarova J, Gustafsson N (2019) Relevance of climatological background error statistics for mesoscale data assimilation. Tellus A 71(1):1615168

    Article  Google Scholar 

  • Bölöni G (2006) Development of a variational data assimilation system for a limited area model at the Hungarian Meteorological Service. Q J Hung Meteorol Serv 110(3–4):309–327

    Google Scholar 

  • Bölöni G, Berre L, Adamcsek E (2015) Comparison of static mesoscale background-error covariances estimated by three different ensemble data assimilation techniques. Q J R Meteorol Soc 141(687):413–425

    Article  Google Scholar 

  • Bonavita M, Raynaud L, Isaksen L (2011) Estimating background-error variances with the ECMWF Ensemble of Data Assimilations system: some effects of ensemble size and day-to-day variability. Q J R Meteorol Soc 137(655):423–434

    Article  Google Scholar 

  • Bouttier F (1996) Application of Kalman filtering to numerical weather prediction. In Proceeding 1996 ECMWF Seminar on data assimilation and workshop on non-linear aspects of data assimilation. ECMWF, Reading, UK, pp 61–90

    Google Scholar 

  • Buehner M (2005) Ensemble-derived stationary and flow-dependent background-error covariances: evaluation in a quasi-operational NWP setting. Q J R Meteorol Soc 131(607):1013–1043

    Article  Google Scholar 

  • Buehner M, Houtekamer PL, Charette C, Mitchell HL, He B (2010) Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon Weather Rev 138(5):1550–1566

    Google Scholar 

  • Caron JF, Michel Y, Montmerle T, Arbogast É (2019) Improving background error covariances in a 3D ensemble–variational data assimilation system for regional NWP. Mon Weather Rev 147(1):135–151

    Article  Google Scholar 

  • Chapnik B, Desroziers G, Rabier F, Talagrand O (2004) Properties and first application of an error-statistics tuning method in variational assimilation. Q J R Meteorol Soc 130(601):2253–2275

    Article  Google Scholar 

  • Chen Y, Rizvi SR, Huang XY, Min J, Zhang X (2013) Balance characteristics of multivariate background error covariances and their impact on analyses and forecasts in tropical and Arctic regions. Meteorol Atmos Phys 121(1–2):79–98

    Article  Google Scholar 

  • Chen Y, Zeng L, Huang XY, Wang H, Rizvi SR (2014) A study of latitude dependent background error covariance and its impact. J Trop Meteorol 30(4):654–662

    Google Scholar 

  • Clayton AM, Lorenc AC, Barker DM (2013) Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Q J R Meteorol Soc 139(675):1445–1461

    Article  Google Scholar 

  • Courtier P, Andersson E, Heckley W, Vasiljevic D, Hamrud M, Hollingsworth A et al. (1998) The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation. Q J R Meteorol Soc 124(550):1783–1807

    Google Scholar 

  • Daley R (1991) Atmospheric data analysis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Daley R (1996) Generation of global multivariate error covariances by singular-value decomposition of the linear balance equation. Mon Weather Rev 124(11):2574–2587

    Article  Google Scholar 

  • Deckmyn A, Berre L (2005) A wavelet approach to representing background error covariances in a limited-area model. Mon Weather Rev 133(5):1279–1294

    Article  Google Scholar 

  • Derber J, Bouttier F (1999) A reformulation of the background error covariance in the ECMWF global data assimilation system. Tellus A 51(2):195–221

    Article  Google Scholar 

  • Ehrendorfer M (2007) A review of issues in ensemble-based Kalman filtering. Meteorol Z 16(6):795–818

    Article  Google Scholar 

  • Epstein ES (1969) Stochastic dynamic prediction. Tellus 21(6):739–759

    Google Scholar 

  • Errico RM, Privé NC, Gu W (2015) Use of an OSSE to evaluate background-error covariances estimated by the NMC method. Q J R Meteorol Soc 141(687):611–618

    Article  Google Scholar 

  • Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res: Oceans 99(C5):10143–10162

    Article  Google Scholar 

  • Evensen G (2003) The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367

    Article  Google Scholar 

  • Fisher M (2003) Background error covariance modelling. In Seminar on recent development in data assimilation for atmosphere and ocean. ECMWF, Reading, UK, pp 45–63

    Google Scholar 

  • Fisher M, Andersson E (2001) Developments in 4D-Var and Kalman filtering. ECMWF Tech Memo 347, pp 38

    Google Scholar 

  • Fischer C, Montmerle T, Berre L, Auger L, Ştefănescu SE (2005) An overview of the variational assimilation in the ALADIN/France numerical weather-prediction system. Q J R Meteorol Soc 131(613):3477–3492

    Article  Google Scholar 

  • Gaspari G, Cohn SE (1999) Construction of correlation functions in two and three dimensions. Q J R Meteorol Soc 125(554):723–757

    Article  Google Scholar 

  • Gu J, Xiao Q, Kuo YH, Barker DM, Jishan X, Xiaoxing MA (2005) Assimilation and simulation of typhoon Rusa (2002) using the WRF system. Adv Atmos Sci 22(3):415–427

    Article  Google Scholar 

  • Gustafsson N, Bojarova J, Vignes O (2014) A hybrid variational ensemble data assimilation for the HIgh Resolution Limited Area Model (HIRLAM). Nonlinear Process Geophys 21(1):303–323

    Article  Google Scholar 

  • Gustafsson N, Huang XY, Yang X, Mogensen K, Lindskog M, Vignes O et al (2012) Four-dimensional variational data assimilation for a limited area model. Tellus A 64(1):14985

    Article  Google Scholar 

  • Ha JH, Lee DK (2012) Effect of length scale tuning of background error in WRF-3DVAR system on assimilation of high-resolution surface data for heavy rainfall simulation. Adv Atmos Sci 29(6):1142–1158

    Article  Google Scholar 

  • Hamill TM (2006) Ensemble-based atmospheric data assimilation. In: Palmer T, Hagedorn R (eds) Predictability of weather and climate. Cambridge University Press, Cambridge, pp 124–156

    Chapter  Google Scholar 

  • Hamill TM, Snyder C (2000) A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon Weather Rev 128(8):2905–2919

    Article  Google Scholar 

  • Heng BP, Tubbs R, Huang XY, Macpherson B, Barker DM, Boyd DF et al (2020) SINGV‐DA: a data assimilation system for convective‐scale numerical weather prediction over Singapore. Q J R Meteorol Soc 146(729):1923–1938

    Article  Google Scholar 

  • Hohenegger C, Walser A, Langhans W, Schär C (2008) Cloud-resolving ensemble simulations of the August 2005 Alpine flood. Q J R Meteorol Soc 134(633):889–904

    Article  Google Scholar 

  • Hollingsworth A, Lönnberg P (1986) The statistical structure of short‐range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus A 38(2):111–136

    Google Scholar 

  • Horvath K, Gergely B (2004) Comparison of NMC and Lönnberg-Hollingsworth type of background error statistics of the ALADIN/HU model. RC LACE internal report, pp 18

    Google Scholar 

  • Houtekamer PL, Lefaivre L, Derome J, Ritchie H, Mitchell HL (1996) A system simulation approach to ensemble prediction. Mon Weather Rev 124(6):1225–1242

    Article  Google Scholar 

  • Houtekamer PL, Zhang F (2016) Review of the ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev 144(12):4489–4532

    Article  Google Scholar 

  • Huang XY, Barker D, Webster S, Dipankar A, Lock A, Mittermaier M et al (2019) SINGV–the convective-scale numerical weather prediction system for Singapore. ASEAN J Sci Technol Dev 36(3):81–90

    Article  Google Scholar 

  • Huang XY, Xiao Q, Barker DM, Zhang X, Michalakes J, Huang W et al (2009) Four-dimensional variational data assimilation for WRF: formulation and preliminary results. Mon Weather Rev 137(1):299–314

    Article  Google Scholar 

  • Ingleby NB (2001) The statistical structure of forecast errors and its representation in The Met. Office global 3‐D variational data assimilation scheme. Q J R Meteorol Soc 127(571):209–231

    Google Scholar 

  • Järvinen H (2001) Temporal evolution of innovation and residual statistics in the ECMWF variational data assimilation systems. Tellus A 53(3):333–347

    Article  Google Scholar 

  • Kalnay E (2003) Atmospheric modeling, data assimilation and predictability. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Kleist DT, Parrish DF, Derber JC, Treadon R, Wu WS, Lord S (2009) Introduction of the GSI into the NCEP global data assimilation system. Weather Forecasting 24(6):1691–1705

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn Ser II 93(1):5–48

    Article  Google Scholar 

  • Lee JCK, Huang XY (2020) Background error statistics in the tropics: structures and impact in a convective‐scale numerical weather prediction system. Q J R Meteorol Soc 146(730):2154–2173

    Article  Google Scholar 

  • Li X, Zeng M, Wang Y, Wang W, Wu H, Mei H (2016) Evaluation of two momentum control variable schemes and their impact on the variational assimilation of radarwind data: case study of a squall line. Adv Atmos Sci 33(10):1143–1157

    Article  Google Scholar 

  • Liu YA, Huang HL, Gao W, Lim AH, Liu C, Shi R (2015) Tuning of background error statistics through sensitivity experiments and its impact on typhoon forecast. J Appl Remote Sens 9(1):096051

    Google Scholar 

  • Lönnberg P, Hollingsworth A (1986) The statistical structure of short-range forecast errors as determined from radiosonde data Part II: the covariance of height and wind errors. Tellus A 38(2):137–161

    Article  Google Scholar 

  • Lorenc AC (1997) Development of an operational variational assimilation scheme. J Meteorol Soc Jpn Ser II 75(1B):339–346

    Article  Google Scholar 

  • Lorenc AC (2003) The potential of the ensemble Kalman filter for NWP—a comparison with 4D-Var. Q J R Meteorol Soc 129(595):3183–3203

    Article  Google Scholar 

  • Lorenc AC, Ballard SP, Bell RS, Ingleby NB, Andrews PL, Barker DM et al. (2000) The Met. office global three‐dimensional variational data assimilation scheme. Q J R Meteorol Soc 126(570):2991–3012

    Google Scholar 

  • Meng Z, Zhang F (2011) Limited-area ensemble-based data assimilation. Mon Weather Rev 139(7):2025–2045

    Article  Google Scholar 

  • Michel Y, Auligné T (2010) Inhomogeneous background error modeling and estimation over Antarctica. Mon Weather Rev 138(6):2229–2252

    Article  Google Scholar 

  • Montmerle T, Berre L (2010) Diagnosis and formulation of heterogeneous background-error covariances at the mesoscale. Q J R Meteorol Soc 136(651):1408–1420

    Article  Google Scholar 

  • Montmerle T, Lafore JP, Berre L, Fischer C (2006) Limited-area model error statistics over Western Africa: comparisons with midlatitude results. Q J R Meteorol Soc 132(614):213–230

    Article  Google Scholar 

  • Montmerle T, Michel Y, Arbogast E, Ménétrier B, Brousseau P (2018) A 3D ensemble variational data assimilation scheme for the limited-area AROME model: formulation and preliminary results. Q J R Meteorol Soc 144(716):2196–2215

    Article  Google Scholar 

  • Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H et al (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn Ser II 85(3):369–432

    Article  Google Scholar 

  • Parrish DF, Derber JC (1992) The national meteorological center’s spectral statistical-interpolation analysis system. Mon Weather Rev 120(8):1747–1763

    Article  Google Scholar 

  • Purser RJ, Wu WS, Parrish DF, Roberts NM (2003) Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon Weather Rev 131(8):1524–35

    Google Scholar 

  • Rabier F, McNally A, Andersson E, Courtier P, Unden P, Eyre J et al. (1998) The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). II: Structure functions. Q J R Meteorol Soc 124(550):1809–1829

    Google Scholar 

  • Rawlins F, Ballard SP, Bovis KJ, Clayton AM, Li D, Inverarity GW et al (2007) The met office global four-dimensional variational data assimilation scheme. Q J R Meteorol Soc 133(623):347–362

    Article  Google Scholar 

  • Rutherford ID (1972) Data assimilation by statistical interpolation of forecast error fields. J Atmos Sci 29(5):809–815

    Article  Google Scholar 

  • Sadiki W, Fischer C (2005) A posteriori validation applied to the 3D-VAR Arpège and Aladin data assimilation systems. Tellus A 57(1):21–34

    Google Scholar 

  • Sattler K, Huang XY (2002) Structure function characteristics for 2 metre temperature and relative humidity in different horizontal resolutions. Tellus A 54(1):14–33

    Article  Google Scholar 

  • Široká M, Fischer C, Cassé V, Brožková R, Geleyn JF (2003) The definition of mesoscale selective forecast error covariances for a limited area variational analysis. Meteorol Atmos Phys 82(1–4):227–244

    Article  Google Scholar 

  • Sobel AH, Nilsson J, Polvani LM (2001) The weak temperature gradient approximation and balanced tropical moisture waves. J Atmos Sci 58(23):3650–3665

    Article  Google Scholar 

  • Stanesic A, Horvath K, Keresturi E (2019) Comparison of NMC and ensemble-based climatological background-error covariances in an operational limited-area data assimilation system. Atmos 10(10):570

    Article  Google Scholar 

  • Storto A, Randriamampianina R (2010) Ensemble variational assimilation for the representation of background error covariances in a high‐latitude regional model. J Geophys Res: Atmos 115(D17)

    Google Scholar 

  • Sun J, Wang H, Tong W, Zhang Y, Lin CY, Xu D (2016) Comparison of the impacts of momentum control variables on high-resolution variational data assimilation and precipitation forecasting. Mon Weather Rev 144(1):149–169

    Article  Google Scholar 

  • Thiébaux HJ, Mitchell HL, Shantz DW (1986) Horizontal structure of hemispheric forecast error correlations for geopotential and temperature. Mon Weather Rev 114(6):1048–1066

    Article  Google Scholar 

  • Tippett MK, Anderson JL, Bishop CH, Hamill TM, Whitaker JS (2003) Ensemble square root filters. Mon Weather Rev 131(7):1485–1490

    Article  Google Scholar 

  • Varella H, Berre L, Desroziers G (2011) Diagnostic and impact studies of a wavelet formulation of background-error correlations in a global model. Q J R Meteorol Soc 137(658):1369–1379

    Article  Google Scholar 

  • Vetra-Carvalho S, Dixon M, Migliorini S, Nichols NK, Ballard SP (2012) Breakdown of hydrostatic balance at convective scales in the forecast errors in the met office unified model. Q J R Meteorol Soc 138(668):1709–1720

    Article  Google Scholar 

  • Wang X, Barker DM, Snyder C, Hamill TM (2008) A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part I: observing system simulation experiment. Mon Weather Rev 136(12):5116–5131

    Google Scholar 

  • Weaver A, Courtier P (2001) Correlation modelling on the sphere using a generalized diffusion equation. Q J R Meteorol Soc 127(575):1815–1846

    Article  Google Scholar 

  • Wheeler M, Kiladis GN, Webster PJ (2000) Large-scale dynamical fields associated with convectively coupled equatorial waves. J Atmos Sci 57(5):613–640

    Article  Google Scholar 

  • Whitaker JS, Compo GP, Wei X, Hamill TM (2004) Reanalysis without radiosondes using ensemble data assimilation. Mon Weather Rev 132(5):1190–1200

    Article  Google Scholar 

  • Whitaker JS, Hamill TM (2002) Ensemble data assimilation without perturbed observations. Mon Weather Rev 130(7):1913–1924

    Article  Google Scholar 

  • Whitaker JS, Hamill TM, Wei X, Song Y, Toth Z (2008) Ensemble data assimilation with the NCEP global forecast system. Mon Weather Rev 136(2):463–482

    Article  Google Scholar 

  • Wu WS, Purser RJ, Parrish DF (2002) Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon Weather Rev 130(12):2905–2916

    Article  Google Scholar 

  • Xu Q, Nai K, Wei L (2007) An innovation method for estimating radar radial-velocity observation error and background wind error covariances. Q J R Meteorol Soc 133(623):407–415

    Article  Google Scholar 

  • Xu Q, Wei L (2001) Estimation of three-dimensional error covariances. Part II: analysis of wind innovation vectors. Mon Weather Rev 129(12):2939–2954

    Google Scholar 

  • Xu Q, Wei L (2002) Estimation of three-dimensional error covariances. Part III: Height–wind forecast error correlation and related geostrophy. Mon Weather Rev 130(4):1052–1062

    Google Scholar 

  • Xu Q, Wei L, Van Tuyl A, Barker EH (2001) Estimation of three-dimensional error covariances. Part I: analysis of height innovation vectors. Mon Weather Rev 129(8):2126–2135

    Google Scholar 

  • Žagar N, Andersson E, Fisher M (2005) Balanced tropical data assimilation based on a study of equatorial waves in ECMWF short-range forecast errors. Q J R Meteorol Soc 131(607):987–1011

    Article  Google Scholar 

  • Žagar N, Andersson E, Fisher M, Untch A (2007) Influence of the Quasi-Biennial Oscillation on the ECMWF model short-range-forecast errors in the tropical stratosphere. Q J R Meteorol Soc 133(628):1843–1853

    Article  Google Scholar 

  • Žagar N, Gustafsson N, Källén E (2004) Variational data assimilation in the tropics: the impact of a background-error constraint. Q J R Meteorol Soc 130(596):103–125

    Article  Google Scholar 

  • Žagar N, Stoffelen A, Marseille GJ, Accadia C, Schlüssel P (2008) Impact assessment of simulated Doppler wind lidars with a multivariate variational assimilation in the tropics. Mon Weather Rev 136(7):2443–2460

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Chun Kwang Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Lee, J.C.K., Huang, XY. (2022). Modelling the Background Error Covariance Matrix: Applicability Over the Maritime Continent. In: Park, S.K., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV). Springer, Cham. https://doi.org/10.1007/978-3-030-77722-7_23

Download citation

Publish with us

Policies and ethics