Skip to main content

Additive Manufacturing of High-Entropy Alloys: Microstructural Metastability and Mechanical Properties

  • Chapter
  • First Online:
High-Entropy Materials: Theory, Experiments, and Applications

Abstract

Interesting properties of high-entropy alloys (HEAs) and technological advantages of additive manufacturing (AM) have boosted explosive research in AM of HEAs in recent years. This chapter introduces the working principles of various metal AM techniques and discusses the fundamental mechanisms for the formation of defects and microstructures during AM. This chapter also provides a comprehensive review on the microstructures, mechanical properties, and potential applications of AM HEAs. In particular, the formation of highly nonequilibrium microstructures during rapid solidification and its impact on the mechanical properties are discussed. Finally, several future research directions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014)

    Article  CAS  Google Scholar 

  2. Y. Qiu, S. Thomas, M.A. Gibson, H.L. Fraser, N. Birbilis, Corrosion of high entropy alloys. NPJ Mater. Degrad. 1, 15 (2017)

    Article  Google Scholar 

  3. S.H. Joo, H. Kato, M.J. Jang, J. Moon, E.B. Kim, S.J. Hong, H.S. Kim, Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering. J. Alloys Compd. 698, 591–604 (2017)

    Article  CAS  Google Scholar 

  4. G.P. Dinda, A.K. Dasgupta, J. Mazumder, Texture control during laser deposition of nickel-based superalloy. Scr. Mater. 67, 503–506 (2012)

    Article  CAS  Google Scholar 

  5. Y. Xiong, W.H. Hofmeister, Z. Cheng, J.E. Smugeresky, E.J. Lavernia, J.M. Schoenung, In situ thermal imaging and three-dimensional finite element modeling of tungsten carbide-cobalt during laser deposition. Acta Mater. 57, 5419–5429 (2009)

    Article  CAS  Google Scholar 

  6. W.P. Liu, J.N. DuPont, Direct laser deposition of a single-crystal Ni3Al-based IC221W alloy. Metall. Mater. Trans. A 36A, 3397–3406 (2005)

    Article  CAS  Google Scholar 

  7. X. Lin, T.M. Yue, H.O. Yang, W.D. Huang, Microstructure and phase evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloy. Acta Mater. 54, 1901–1915 (2006)

    Article  CAS  Google Scholar 

  8. S.N. Cao, D.D. Gu, Q.M. Shi, Relation of microstructure, microhardness and underlying thermodynamics in molten pools of laser melting deposition processed TiC/Inconel 625 composites. J. Alloys Compd. 692, 758–769 (2017)

    Article  CAS  Google Scholar 

  9. M. Yan, P. Yu, An overview of densification, microstructure and mechanical property of additively manufactured Ti-6Al-4V: Comparison among selective laser melting, electron beam melting, laser metal deposition and selective laser sintering, and with conventional powder (2015)

    Google Scholar 

  10. L. Li, Repair of directionally solidified superalloy GTD-111 by laser-engineered net shaping. J. Mater. Sci. 41, 7886–7893 (2006)

    Article  CAS  Google Scholar 

  11. R. Banerjee, P.C. Collins, D. Bhattacharyya, S. Banerjee, H.L. Fraser, Microstructural evolution in laser deposited compositionally graded alpha/beta titanium-vanadium alloys. Acta Mater. 51, 3277–3292 (2003)

    Article  CAS  Google Scholar 

  12. L. Jiao, Z. Chua, S. Moon, J. Song, G. Bi, H. Zheng, Femtosecond laser produced hydrophobic hierarchical structures on additive manufacturing parts. Nano 8, 601 (2018)

    Google Scholar 

  13. S. Guan, D. Wan, K. Solberg, F. Berto, T. Welo, T.M. Yue, K.C. Chan, Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping. Mater. Sci. Eng. A 761, 138056 (2019)

    Article  CAS  Google Scholar 

  14. Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting. Scr. Mater. 154, 20–24 (2018)

    Article  CAS  Google Scholar 

  15. J.M. Park, J. Choe, J.G. Kim, J.W. Bae, J. Moon, S. Yang, K.T. Kim, J.-H. Yu, H.S. Kim, Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting. Mater. Res. Lett., 1–7 (2019)

    Google Scholar 

  16. J.G. Kim, J.M. Park, J.B. Seol, J. Choe, J.H. Yu, S. Yang, H.S. Kim, Nano-scale solute heterogeneities in the ultrastrong selectively laser melted carbon-doped CoCrFeMnNi alloy. Mater. Sci. Eng. A 773, 9 (2020)

    Article  Google Scholar 

  17. B. Li, L. Zhang, B. Yang, Grain refinement and localized amorphization of additively manufactured high-entropy alloy matrix composites reinforced by nano ceramic particles via selective-laser-melting/remelting. Compos. Commun. 19, 56–60 (2020)

    Article  Google Scholar 

  18. B. Li, L. Zhang, Y. Xu, Z. Liu, B. Qian, F. Xuan, Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: Process, particle behavior and effects. Powder Technol. 360, 509–521 (2020)

    Article  CAS  Google Scholar 

  19. B. Li, B. Qian, Y. Xu, Z. Liu, F. Xuan, Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12 wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing. Mater. Lett. 252, 88–91 (2019)

    Article  CAS  Google Scholar 

  20. J. Li, S. Xiang, H. Luan, A. Amar, X. Liu, S. Lu, Y. Zeng, G. Le, X. Wang, F. Qu, C. Jiang, G. Yang, Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition. J. Mater. Sci. Technol. 35, 2430–2434 (2019)

    Article  Google Scholar 

  21. A. Amar, J. Li, S. Xiang, X. Liu, Y. Zhou, G. Le, X. Wang, F. Qu, S. Ma, W. Dong, Q. Li, Additive manufacturing of high-strength CrMnFeCoNi-based high entropy alloys with TiC addition. Intermetallics 109, 162–166 (2019)

    Article  CAS  Google Scholar 

  22. Z. Sun, X.P. Tan, M. Descoins, D. Mangelinck, S.B. Tor, C.S. Lim, Revealing hot tearing mechanism for an additively manufactured high-entropy alloy via selective laser melting. Scr. Mater. 168, 129–133 (2019)

    Article  CAS  Google Scholar 

  23. R. Zhou, Y. Liu, C.S. Zhou, S.Q. Li, W.Q. Wu, M. Song, B. Liu, X.P. Liang, P.K. Liaw, Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting. Intermetallics 94, 165–171 (2018)

    Article  CAS  Google Scholar 

  24. R. Zhou, Y. Liu, B. Liu, J. Li, Q. Fang, Precipitation behavior of selective laser melted FeCoCrNiC0.05 high entropy alloy. Intermetallics 106, 20–25 (2019)

    Article  CAS  Google Scholar 

  25. M.S.K.K.Y. Nartu, T. Alam, S. Dasari, S.A. Mantri, S. Gorsse, H. Siller, N. Dahotre, R. Banerjee, Enhanced tensile yield strength in laser additively manufactured Al0.3CoCrFeNi high entropy alloy. Materialia 9, 100522 (2020)

    Article  CAS  Google Scholar 

  26. K. Zhou, Z. Wang, F. He, S. Liu, J. Li, J.-j. Kai, J. Wang, A precipitation-strengthened high-entropy alloy for additive manufacturing. Addit. Manuf. 101410 (2020)

    Google Scholar 

  27. M. Moorehead, K. Bertsch, M. Niezgoda, C. Parkin, M. Elbakhshwan, K. Sridharan, C. Zhang, D. Thoma, A. Couet, High-throughput synthesis of Mo-Nb-ta-W high-entropy alloys via additive manufacturing. Mater. Des. 187, 108358 (2020)

    Article  CAS  Google Scholar 

  28. T. Borkar, V. Chaudhary, B. Gwalani, D. Choudhuri, C.V. Mikler, V. Soni, T. Alam, R.V. Ramanujan, R. Banerjee, A combinatorial approach for assessing the magnetic properties of high entropy alloys: Role of Cr in AlCoxCr1–xFeNi. Adv. Eng. Mater. 19, 1700048 (2017)

    Article  Google Scholar 

  29. B. Gwalani, S. Gangireddy, S. Shukla, C.J. Yannetta, S.G. Valentin, R.S. Mishra, R. Banerjee, Compositionally graded high entropy alloy with a strong front and ductile back. Mater. Today Commun. 20, 100602 (2019)

    Article  CAS  Google Scholar 

  30. X. Gao, Z. Yu, W. Hu, Y. Lu, Z. Zhu, Y. Ji, Y. Lu, Z. Qin, X. Lu, In situ strengthening of CrMnFeCoNi high-entropy alloy with Al realized by laser additive manufacturing. J. Alloys Compd. 847, 156563 (2020)

    Article  CAS  Google Scholar 

  31. H. Dobbelstein, E.L. Gurevich, E.P. George, A. Ostendorf, G. Laplanche, Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends. Addit. Manuf. 25, 252–262 (2019)

    CAS  Google Scholar 

  32. S. Guan, D. Wan, K. Solberg, F. Berto, T. Welo, T.M. Yue, K.C. Chan, Additively manufactured CrMnFeCoNi/AlCoCrFeNiTi0.5 laminated high-entropy alloy with enhanced strength-plasticity synergy. Scr. Mater. 183, 133–138 (2020)

    Article  CAS  Google Scholar 

  33. V.V. Popov, A. Katz-Demyanetz, A. Koptyug, M. Bamberger, Selective electron beam melting of Al0.5CrMoNbTa0.5 high entropy alloys using elemental powder blend. Heliyon 5, e01188 (2019)

    Article  Google Scholar 

  34. A.T. Sidambe, Biocompatibility of advanced manufactured titanium implants-a review. Materials (Basel) 7, 8168–8188 (2014)

    Article  Google Scholar 

  35. S.L. Sing, J. An, W.Y. Yeong, F.E. Wiria, Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. J. Orthop. Res. 34, 369–385 (2016)

    Article  CAS  Google Scholar 

  36. S. Peng, S. Mooraj, R. Feng, L. Liu, J. Ren, Y. Liu, F. Kong, Z. Xiao, C. Zhu, P.K. Liaw, W. Chen, Additive manufacturing of three-dimensional (3D)-architected CoCrFeNiMn high- entropy alloy with great energy absorption. Scr. Mater. 190, 46–51 (2021)

    Article  CAS  Google Scholar 

  37. V.C.-F. Li, C.K. Dunn, Z. Zhang, Y. Deng, H.J. Qi, Direct ink write (DIW) 3D printed cellulose nanocrystal aerogel structures. Sci. Rep. 7, 8018 (2017)

    Article  Google Scholar 

  38. S. Mooraj, S.S. Welborn, S. Jiang, S. Peng, J. Fu, S. Baker, E.B. Duoss, C. Zhu, E. Detsi, W. Chen, Three-dimensional hierarchical nanoporous copper via direct ink writing and dealloying. Scr. Mater. 177, 146–150 (2020)

    Article  CAS  Google Scholar 

  39. T. An, K.-T. Hwang, J.-H. Kim, J. Kim, Extrusion-based 3D direct ink writing of NiZn-ferrite structures with viscoelastic ceramic suspension. Ceram. Int. 46, 6469–6476 (2020)

    Article  CAS  Google Scholar 

  40. C. Kenel, N.P.M. Casati, D.C. Dunand, 3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices. Nat. Commun. 10, 904 (2019)

    Article  Google Scholar 

  41. S. Guan, K. Solberg, D. Wan, F. Berto, T. Welo, T.M. Yue, K.C. Chan, Formation of fully equiaxed grain microstructure in additively manufactured AlCoCrFeNiTi0.5 high entropy alloy. Mater. Des. 184, 108202 (2019)

    Article  CAS  Google Scholar 

  42. G.W. Wang, J.J. Liang, Y.H. Yang, Y. Shi, Y.Z. Zhou, T. Jin, X.F. Sun, Effects of scanning speed on microstructure in laser surface-melted single crystal superalloy and theoretical analysis. J. Mater. Sci. Technol. 34, 1315–1324 (2018)

    Article  Google Scholar 

  43. B. Cheng, J. Lydon, K. Cooper, J. Cole, P. Northrop, K. Chou, Melt pool dimension measurement in selective laser melting using thermal imaging (2017)

    Google Scholar 

  44. J. Romano, L. Ladani, J. Razmi, M. Sadowski, Temperature distribution and melt geometry in laser and electron-beam melting processes – A comparison among common materials. Addit. Manuf. 8, 1–11 (2015)

    CAS  Google Scholar 

  45. S. Price, B. Cheng, J. Lydon, K. Cooper, K. Chou, On process temperature in powder-bed electron beam additive manufacturing: Process parameter effects. J. Manuf. Sci. Eng. 136, 061019 (2014)

    Article  Google Scholar 

  46. S.P. Narra, R. Cunningham, J. Beuth, A.D. Rollett, Location specific solidification microstructure control in electron beam melting of Ti-6Al-4V. Addit. Manuf. 19, 160–166 (2018)

    CAS  Google Scholar 

  47. X. Ding, Y. Koizumi, D. Wei, A. Chiba, Effect of process parameters on melt pool geometry and microstructure development for electron beam melting of IN718: A systematic single bead analysis study. Addit. Manuf. 26, 215–226 (2019)

    CAS  Google Scholar 

  48. P.A. Hooper, Melt pool temperature and cooling rates in laser powder bed fusion. Addit. Manuf. 22, 548–559 (2018)

    CAS  Google Scholar 

  49. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – Process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)

    Article  CAS  Google Scholar 

  50. T. Eagar, N. Tsai, Temperature Fields Produced by Traveling Distributed Heat Sources, 1983

    Google Scholar 

  51. L. Johnson, M. Mahmoudi, B. Zhang, R. Seede, X. Huang, J.T. Maier, H.J. Maier, I. Karaman, A. Elwany, R. Arróyave, Assessing printability maps in additive manufacturing of metal alloys. Acta Mater. 176, 199–210 (2019)

    Article  CAS  Google Scholar 

  52. Y. Xue, A. Pascu, M.F. Horstemeyer, L. Wang, P.T. Wang, Microporosity effects on cyclic plasticity and fatigue of LENS™-processed steel. Acta Mater. 58, 4029–4038 (2010)

    Article  CAS  Google Scholar 

  53. R. Cunningham, A. Nicolas, J. Madsen, E. Fodran, E. Anagnostou, M.D. Sangid, A.D. Rollett, Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V. Mater. Res. Lett. 5, 516–525 (2017)

    Article  CAS  Google Scholar 

  54. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 214, 2915–2925 (2014)

    Article  Google Scholar 

  55. K.G. Prashanth, S. Scudino, T. Maity, J. Das, J. Eckert, Is the energy density a reliable parameter for materials synthesis by selective laser melting? Mater. Res. Lett. 5, 386–390 (2017)

    Article  CAS  Google Scholar 

  56. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1–4, 77–86 (2014)

    Google Scholar 

  57. N. Wang, S. Mokadem, M. Rappaz, W. Kurz, Solidification cracking of superalloy single- and bi-crystals. Acta Mater. 52, 3173–3182 (2004)

    Article  CAS  Google Scholar 

  58. H. Peng, Y. Shi, S. Gong, H. Guo, B. Chen, Microstructure, mechanical properties and cracking behaviour in γ’–precipitation strengthened nickel-base superalloy fabricated by electron beam melting. Mater. Des. 159, 155–169 (2018)

    Article  CAS  Google Scholar 

  59. Q.Q. Han, R. Mertens, M.L. Montero-Sistiaga, S.F. Yang, R. Setchi, K. Vanmeensel, B. Van Hooreweder, S.L. Evans, H.Y. Fan, Laser powder bed fusion of Hastelloy X: Effects of hot isostatic pressing and the hot cracking mechanism. Mater. Sci. Eng. A 732, 228–239 (2018)

    Article  CAS  Google Scholar 

  60. L. Wang, N. Wang, N. Provatas, Liquid channel segregation and morphology and their relation with hot cracking susceptibility during columnar growth in binary alloys. Acta Mater. 126, 302–312 (2017)

    Article  CAS  Google Scholar 

  61. Y. Chen, F.G. Lu, K. Zhang, P.L. Nie, S.R.E. Hosseini, K. Feng, Z.G. Li, Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling. J. Alloys Compd. 670, 312–321 (2016)

    Article  CAS  Google Scholar 

  62. Y. Chen, F.G. Lu, K. Zhang, P.L. Nie, S.R.E. Hosseini, K. Feng, Z.G. Li, P.K. Chu, Investigation of dendritic growth and liquation cracking in laser melting deposited Inconel 718 at different laser input angles. Mater. Des. 105, 133–141 (2016)

    Article  CAS  Google Scholar 

  63. Y. Chen, K. Zhang, J. Huang, S.R.E. Hosseini, Z.G. Li, Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718. Mater. Des. 90, 586–594 (2016)

    Article  CAS  Google Scholar 

  64. O.A. Ojo, N.L. Richards, M.C. Chaturvedi, Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy. Scr. Mater. 50, 641–646 (2004)

    Article  CAS  Google Scholar 

  65. O.A. Ojo, N.L. Richards, M.C. Chaturvedi, Study of the fusion zone and heat-affected zone microstructures in tungsten inert gas-welded INCONEL 738LC superalloy. Metall. Mater. Trans. A 37A, 421–433 (2006)

    Article  CAS  Google Scholar 

  66. M. Zhong, H. Sun, W. Liu, X. Zhu, J. He, Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy. Scr. Mater. 53, 159–164 (2005)

    Article  CAS  Google Scholar 

  67. S. Asavavisithchai, W. Homkrajai, P. Wangyao, Strain-age cracking after postweld heat treatments in Inconel 738 superalloy. High Temp. Mater., Processes (London), 61 (2010)

    Google Scholar 

  68. A.J. Ramirez, J.C. Lippold, High temperature behavior of Ni-base weld metal: Part II. Insight into the mechanism for ductility dip cracking. Mater. Sci. Eng. A 380, 245–258 (2004)

    Article  Google Scholar 

  69. A.A.N. Németh, D.J. Crudden, D.E.J. Armstrong, D.M. Collins, K. Li, A.J. Wilkinson, C.R.M. Grovenor, R.C. Reed, Environmentally-assisted grain boundary attack as a mechanism of embrittlement in a nickel-based superalloy. Acta Mater. 126, 361–371 (2017)

    Article  Google Scholar 

  70. J. Zhang, R.F. Singer, Hot tearing of nickel-based superalloys during directional solidification. Acta Mater. 50, 1869–1879 (2002)

    Article  CAS  Google Scholar 

  71. S. Thapliyal, S.S. Nene, P. Agrawal, T. Wang, C. Morphew, R.S. Mishra, B.A. McWilliams, K.C. Cho, Damage-tolerant, corrosion-resistant high entropy alloy with high strength and ductility by laser powder bed fusion additive manufacturing. Addit. Manuf. 36, 101455 (2020)

    CAS  Google Scholar 

  72. Z. Sun, X. Tan, C. Wang, M. Descoins, D. Mangelinck, S.B. Tor, E.A. Jägle, S. Zaefferer, D. Raabe, Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: Example of an AlxCoCrFeNi high-entropy alloy. Acta Mater. 116505 (2020)

    Google Scholar 

  73. M. Rappaz, J.M. Drezet, M. Gremaud, A new hot-tearing criterion. Metall. Mater. Trans. A 30, 449–455 (1999)

    Article  Google Scholar 

  74. S. Kou, A criterion for cracking during solidification. Acta Mater. 88, 366–374 (2015)

    Article  CAS  Google Scholar 

  75. O. Adegoke, J. Andersson, H. Brodin, R. Pederson, Review of laser powder bed fusion of gamma-prime-strengthened nickel-based superalloys. Metals 10, 26 (2020)

    Article  Google Scholar 

  76. X.Q. Wang, L.N. Carter, B. Pang, M.M. Attallah, M.H. Loretto, Microstructure and yield strength of SLM-fabricated CM247LC Ni-superalloy. Acta Mater. 128, 87–95 (2017)

    Article  CAS  Google Scholar 

  77. M. Gäumann, S. Henry, F. Cleton, J.D. Wagniere, W. Kurz, Epitaxial laser metal forming: Analysis of microstructure formation. Mater. Sci. Eng. A 271, 232–241 (1999)

    Article  Google Scholar 

  78. G.P. Dinda, A.K. Dasgupta, J. Mazumder, Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability. Mater. Sci. Eng. A 509, 98–104 (2009)

    Article  Google Scholar 

  79. Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, S.B. Tor, Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 139, 565–586 (2018)

    Article  CAS  Google Scholar 

  80. X. Lin, T.M. Yue, H.O. Yang, W.D. Huang, Laser rapid forming of SS316L/Rene88DT graded material. Mater. Sci. Eng. A 391, 325–336 (2005)

    Article  Google Scholar 

  81. X. Lin, T.M. Yue, Phase formation and microstructure evolution in laser rapid forming of graded SS316L/Rene88DT alloy. Mater. Sci. Eng. A 402, 294–306 (2005)

    Article  Google Scholar 

  82. Y.M. Li, H. Yang, X. Lin, W.D. Huang, J.G. Li, Y.H. Zhou, The influences of processing parameters on forming characterizations during laser rapid forming. Mater. Sci. Eng. A 360, 18–25 (2003)

    Article  Google Scholar 

  83. W. Kurz, C. Bezencon, M. Gäumann, Columnar to equiaxed transition in solidification processing. Sci. Technol. Adv. Mater. 2, 185–191 (2001)

    Article  CAS  Google Scholar 

  84. M. Gäumann, C. Bezencon, P. Canalis, W. Kurz, Single-crystal laser deposition of superalloys: Processing-microstructure maps. Acta Mater. 49, 1051–1062 (2001)

    Article  Google Scholar 

  85. D. Dube, M. Fiset, A. Couture, I. Nakatsugawa, Characterization and performance of laser melted AZ91D and AM60B. Mater. Sci. Eng. A 299, 38–45 (2001)

    Article  Google Scholar 

  86. F. Cleton, P.H. Jouneau, S. Henry, M. Gaumann, P.A. Buffat, Crystallographic orientation assessment by electron backscattered diffraction. Scanning 21, 232–237 (1999)

    Article  CAS  Google Scholar 

  87. R. Banerjee, P.C. Collins, A. Genc, H.L. Fraser, Direct laser deposition of in situ Ti-6Al-4V-TiB composites. Mater. Sci. Eng. A 358, 343–349 (2003)

    Article  Google Scholar 

  88. R.S. Amano, P.K. Rohatgi, Laser engineered net shaping process for SAE 4140 low alloy steel. Mater. Sci. Eng. A 528, 6680–6693 (2011)

    Article  CAS  Google Scholar 

  89. R. Banerjee, C.A. Brice, S. Banerjee, H.L. Fraser, Microstructural evolution in laser deposited Ni-25at.% Mo alloy. Mater. Sci. Eng. A 347, 1–4 (2003)

    Article  Google Scholar 

  90. W. Xiao, S. Li, C. Wang, Y. Shi, J. Mazumder, H. Xing, L. Song, Multi-scale simulation of dendrite growth for direct energy deposition of nickel-based superalloys. Mater. Des. 164, 107553 (2019)

    Article  CAS  Google Scholar 

  91. Y.Y. Zhu, D. Liu, X.J. Tian, H.B. Tang, H.M. Wang, Characterization of microstructure and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy. Mater. Des. 56, 445–453 (2014)

    Article  CAS  Google Scholar 

  92. T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, H.M. Wang, Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing. J. Alloys Compd. 632, 505–513 (2015)

    Article  CAS  Google Scholar 

  93. L.L. Parimi, G.A. Ravi, D. Clark, M.M. Attallah, Microstructural and texture development in direct laser fabricated IN718. Mater. Charact. 89, 102–111 (2014)

    Article  CAS  Google Scholar 

  94. I. Kunce, M. Polanski, K. Karczewski, T. Plocinski, K.J. Kurzydlowski, Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping. J. Alloys Compd. 648, 751–758 (2015)

    Article  CAS  Google Scholar 

  95. K.V. Yang, Y.J. Shi, F. Palm, X.H. Wu, P. Rometsch, Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting. Scr. Mater. 145, 113–117 (2018)

    Article  CAS  Google Scholar 

  96. A.B. Spierings, K. Dawson, T. Heeling, P.J. Uggowitzer, R. Schäublin, F. Palm, K. Wegener, Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting. Mater. Des. 115, 52–63 (2017)

    Article  CAS  Google Scholar 

  97. M. Gäumann, R. Trivedi, W. Kurz, Nucleation ahead of the advancing interface in directional solidification. Mater. Sci. Eng. A 226, 763–769 (1997)

    Article  Google Scholar 

  98. J.D. Hunt, Steady-state columnar and equiaxed growth of dendrites and eutectic. Mater. Sci. Engng. 65, 75–83 (1984)

    Article  CAS  Google Scholar 

  99. Y.B. Zuo, B. Jiang, Y. Zhang, Z. Fan, Iop, Grain refinement of DC cast magnesium alloys with intensive melt shearing, 3rd International Conference on Advances in Solidification Processes (2012)

    Google Scholar 

  100. Y.H. Zhang, X.R. Cheng, H.G. Zhong, Z.S. Xu, L.J. Li, Y.Y. Gong, X.C. Miao, C.J. Song, Q.J. Zhai, Comparative study on the grain refinement of Al-Si alloy solidified under the impact of pulsed electric current and travelling magnetic field. Metals 6 (2016)

    Google Scholar 

  101. T. Yuan, Z. Luo, S. Kou, Grain refining of magnesium welds by arc oscillation. Acta Mater. 116, 166–176 (2016)

    Article  CAS  Google Scholar 

  102. C.J. Todaro, M.A. Easton, D. Qiu, D. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. StJohn, M. Qian, Grain structure control during metal 3D printing by high-intensity ultrasound. Nat. Commun. 11, 142 (2020)

    Article  CAS  Google Scholar 

  103. R.D. Li, P.D. Niu, T.C. Yuan, P. Cao, C. Chen, K.C. Zhou, Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property. J. Alloys Compd. 746, 125–134 (2018)

    Article  CAS  Google Scholar 

  104. A. Piglione, B. Dovgyy, C. Liu, C.M. Gourlay, P.A. Hooper, M.S. Pham, Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion. Mater. Lett. 224, 22–25 (2018)

    Article  CAS  Google Scholar 

  105. Z. Qiu, C. Yao, K. Feng, Z. Li, P.K. Chu, Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process. Int. J. Lightweight Mater. Manuf. 1, 33–39 (2018)

    Google Scholar 

  106. S. Xiang, H.W. Luan, J. Wu, K.F. Yao, J.F. Li, X. Liu, Y.Z. Tian, W.L. Mao, H. Bai, G.M. Le, Q. Li, Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique. J. Alloys Compd. 773, 387–392 (2019)

    Article  CAS  Google Scholar 

  107. X. Gao, Y. Lu, Laser 3D printing of CoCrFeMnNi high-entropy alloy. Mater. Lett. 236, 77–80 (2019)

    Article  CAS  Google Scholar 

  108. Z. Tong, X. Ren, J. Jiao, W. Zhou, Y. Ren, Y. Ye, E.A. Larson, J. Gu, Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: Effect of heat treatment on microstructure, residual stress and mechanical property. J. Alloys Compd. 785, 1144–1159 (2019)

    Article  CAS  Google Scholar 

  109. Y. Chew, G.J. Bi, Z.G. Zhu, F.L. Ng, F. Weng, S.B. Liu, S.M.L. Nai, B.Y. Lee, Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy. Mater. Sci. Eng. A 744, 137–144 (2019)

    Article  CAS  Google Scholar 

  110. M.A. Melia, J.D. Carroll, S.R. Whetten, S.N. Esmaeely, J. Locke, E. White, I. Anderson, M. Chandross, J.R. Michael, N. Argibay, E.J. Schindelholz, A.B. Kustas, Mechanical and corrosion properties of additively manufactured CoCrFeMnNi high entropy alloy. Addit. Manuf. 29, 100833 (2019)

    CAS  Google Scholar 

  111. T. Fujieda, H. Shiratori, K. Kuwabara, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials. Mater. Lett. 159, 12–15 (2015)

    Article  CAS  Google Scholar 

  112. H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, K. Kuwabara, T. Kato, A. Chiba, Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting. Mater. Sci. Eng. A 656, 39–46 (2016)

    Article  CAS  Google Scholar 

  113. J. Joseph, P. Hodgson, T. Jarvis, X.H. Wu, N. Stanford, D.M. Fabijanic, Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng. A 733, 59–70 (2018)

    Article  CAS  Google Scholar 

  114. J. Joseph, T. Jarvis, X.H. Wu, N. Stanford, P. Hodgson, D.M. Fabijanic, Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng. A 633, 184–193 (2015)

    Article  CAS  Google Scholar 

  115. J. Joseph, N. Stanford, P. Hodgson, D.M. Fabijanic, Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy. Scr. Mater. 129, 30–34 (2017)

    Article  CAS  Google Scholar 

  116. Y. Brif, M. Thomas, I. Todd, The use of high-entropy alloys in additive manufacturing. Scr. Mater. 99, 93–96 (2015)

    Article  CAS  Google Scholar 

  117. D. Choudhuri, T. Alam, T. Borkar, B. Gwalani, A.S. Mantri, S.G. Srinivasan, M.A. Gibson, R. Banerjee, Formation of a Huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy. Scr. Mater. 100, 36–39 (2015)

    Article  CAS  Google Scholar 

  118. I. Kunce, M. Polanski, J. Bystrzycki, Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using laser engineered net shaping (LENS). Int. J. Hydrog. Energy 39, 9904–9910 (2014)

    Article  CAS  Google Scholar 

  119. T. Fujieda, H. Shiratori, K. Kuwabara, M. Hirota, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, S. Watanabe, CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment. Mater. Lett. 189, 148–151 (2017)

    Article  CAS  Google Scholar 

  120. P.K. Sarswat, S. Sarkar, A. Murali, W. Huang, W. Tan, M.L. Free, Additive manufactured new hybrid high entropy alloys derived from the AlCoFeNiSmTiVZr system. Appl. Surf. Sci. 476, 242–258 (2019)

    Article  CAS  Google Scholar 

  121. T. Borkar, B. Gwalani, D. Choudhuri, C.V. Mikler, C.J. Yannetta, X. Chen, R.V. Ramanujan, M.J. Styles, M.A. Gibson, R. Banerjee, A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63–76 (2016)

    Article  CAS  Google Scholar 

  122. B. Gwalani, V. Soni, O.A. Waseem, S.A. Mantri, R. Banerjee, Laser additive manufacturing of compositionally graded AlCrFeMoVx (x = 0 to 1) high-entropy alloy system. Opt. Laser Technol. 113, 330–337 (2019)

    Article  CAS  Google Scholar 

  123. W.-C. Lin, Y.-J. Chang, T.-H. Hsu, S. Gorsse, F. Sun, T. Furuhara, A.-C. Yeh, Microstructure and tensile property of a precipitation strengthened high entropy alloy processed by selective laser melting and post heat treatment. Addit. Manuf. 36 (2020)

    Google Scholar 

  124. Y.M. Wang, T. Voisin, J.T. McKeown, J.C. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 17, 63 (2018)

    Article  CAS  Google Scholar 

  125. Y.-K. Kim, J. Choe, K.-A. Lee, Selective laser melted equiatomic CoCrFeMnNi high-entropy alloy: Microstructure, anisotropic mechanical response, and multiple strengthening mechanism. J. Alloys Compd. 805, 680–691 (2019)

    Article  CAS  Google Scholar 

  126. H. Li, Y. Huang, S. Jiang, Y. Lu, X. Gao, X. Lu, Z. Ning, J. Sun, Columnar to equiaxed transition in additively manufactured CoCrFeMnNi high entropy alloy. Mater. Des. 109262 (2020)

    Google Scholar 

  127. M. Zheng, C. Li, X. Zhang, Z. Ye, X. Yang, J. Gu, The influence of columnar to equiaxed transition on deformation behavior of FeCoCrNiMn high entropy alloy fabricated by laser-based directed energy deposition. Addit. Manuf. 101660 (2020)

    Google Scholar 

  128. L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.-L. Chiu, J. Li, Z. Zhang, Q. Yu, Z. Shen, Dislocation network in additive manufactured steel breaks strength–ductility trade-off. Mater. Today 21, 354–361 (2018)

    Article  CAS  Google Scholar 

  129. C. Haase, F. Tang, M.B. Wilms, A. Weisheit, B. Hallstedt, Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design. Mater. Sci. Eng. A 688, 180–189 (2017)

    Article  CAS  Google Scholar 

  130. J. Chen, Z. Yao, X. Wang, Y. Lu, X. Wang, Y. Liu, X. Fan, Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy. Mater. Chem. Phys. 210, 136–145 (2018)

    Article  CAS  Google Scholar 

  131. F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743–5755 (2013)

    Article  CAS  Google Scholar 

  132. S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure. Mater. Des. 133, 122–127 (2017)

    Article  CAS  Google Scholar 

  133. H. Shahmir, J.Y. He, Z.P. Lu, M. Kawasaki, T.G. Langdon, Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng. A 676, 294–303 (2016)

    Article  CAS  Google Scholar 

  134. H. Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng. A 676, 294–303 (2016)

    Article  CAS  Google Scholar 

  135. Y.H. Zhou, Z.H. Zhang, Y.P. Wang, G. Liu, S.Y. Zhou, Y.L. Li, J. Shen, M. Yan, Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis. Addit. Manuf. 25, 204–217 (2019)

    CAS  Google Scholar 

  136. Y. Kuzminova, D. Firsov, A. Dudin, S. Sergeev, A. Zhilyaev, A. Dyakov, A. Chupeeva, A. Alekseev, D. Martynov, I. Akhatov, S. Evlashin, The effect of the parameters of the powder bed fusion process on the microstructure and mechanical properties of CrFeCoNi medium-entropy alloys. Intermetallics 116, 106651 (2020)

    Article  CAS  Google Scholar 

  137. Z. Wang, J. Gu, D. An, Y. Liu, M. Song, Characterization of the microstructure and deformation substructure evolution in a hierarchal high-entropy alloy by correlative EBSD and ECCI. Intermetallics 121, 106788 (2020)

    Article  CAS  Google Scholar 

  138. M. Song, R. Zhou, J. Gu, Z. Wang, S. Ni, Y. Liu, Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy. Appl. Mater. Today 18, 100498 (2020)

    Article  Google Scholar 

  139. P. Agrawal, S. Thapliyal, S.S. Nene, R.S. Mishra, B.A. McWilliams, K.C. Cho, Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing. Addit. Manuf. 32, 101098 (2020)

    CAS  Google Scholar 

  140. X. Yang, Y. Zhou, S. Xi, Z. Chen, P. Wei, C. He, T. Li, Y. Gao, H. Wu, Additively manufactured fine grained Ni6Cr4WFe9Ti high entropy alloys with high strength and ductility. Mater. Sci. Eng. A 767, 138394 (2019)

    Article  CAS  Google Scholar 

  141. X. Yang, Y. Zhou, S. Xi, Z. Chen, P. Wei, C. He, T. Li, Y. Gao, H. Wu, Grain-anisotropied high-strength Ni6Cr4WFe9Ti high entropy alloys with outstanding tensile ductility. Mater. Sci. Eng. A 767, 138382 (2019)

    Article  CAS  Google Scholar 

  142. T. Fujieda, M. Chen, H. Shiratori, K. Kuwabara, K. Yamanaka, Y. Koizumi, A. Chiba, S. Watanabe, Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting. Addit. Manuf. 25, 412–420 (2019)

    CAS  Google Scholar 

  143. Z. Li, S. Zhao, H. Diao, P.K. Liaw, M.A. Meyers, High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure. Sci. Rep. 7, 42742 (2017)

    Article  CAS  Google Scholar 

  144. B. Gwalani, S. Gorsse, D. Choudhuri, Y. Zheng, R.S. Mishra, R. Banerjee, Tensile yield strength of a single bulk Al0.3CoCrFeNi high entropy alloy can be tuned from 160 MPa to 1800 MPa. Scr. Mater. 162(2019), 18–23

    Google Scholar 

  145. I. Kunce, M. Polanski, J. Bystrzycki, Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using laser engineered net shaping (LENS). Int. J. Hydrog. Energy 38, 12180–12189 (2013)

    Article  CAS  Google Scholar 

  146. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227 (2016)

    Article  CAS  Google Scholar 

  147. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 44–51 (2012)

    Article  Google Scholar 

  148. S. Guo, C. Ng, C.T. Liu, Anomalous solidification microstructures in co-free AlxCrCuFeNi2 high-entropy alloys. J. Alloys Compd. 557, 77–81 (2013)

    Article  CAS  Google Scholar 

  149. A. Rohatgi, D.J. Harach, K.S. Vecchio, K.P. Harvey, Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites. Acta Mater. 51, 2933–2957 (2003)

    Article  CAS  Google Scholar 

  150. Y. Li, Q. Zhou, S. Zhang, P. Huang, K. Xu, F. Wang, T. Lu, On the role of weak interface in crack blunting process in nanoscale layered composites. Appl. Surf. Sci. 433, 957–962 (2018)

    Article  CAS  Google Scholar 

  151. B. Chanda, A. Verma, J. Das, Nano−/ultrafine eutectic in CoCrFeNi(Nb/Ta) high-entropy alloys. Trans. Indian Inst. Metals 71, 2717–2723 (2018)

    Article  CAS  Google Scholar 

  152. J. Moon, J.M. Park, J.W. Bae, H.-S. Do, B.-J. Lee, H.S. Kim, A new strategy for designing immiscible medium-entropy alloys with excellent tensile properties. Acta Mater. 193, 71–82 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

W.C. acknowledges the financial support from the US National Science Foundation (CMMI-1927621 and DMR-2004429) and UMass Faculty Startup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guan, S., Chen, W. (2021). Additive Manufacturing of High-Entropy Alloys: Microstructural Metastability and Mechanical Properties. In: Brechtl, J., Liaw, P.K. (eds) High-Entropy Materials: Theory, Experiments, and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-77641-1_5

Download citation

Publish with us

Policies and ethics