Skip to main content

Plant Hormones and Plant Defense Response Against Pathogens

  • Chapter
  • First Online:
Hormones and Plant Response

Part of the book series: Plant in Challenging Environments ((PCE,volume 2))

  • 1167 Accesses

Abstract

Biotic stresses are responsible for 20 to 40% losses of global agricultural productivity. Higher plants interact continuously with virus, fungi and bacteria, some of which lead to plant response firstly in the cell wall and cuticle acting as a physical barrier. However, successful resistance comes from a rapid switch on of the plant’s innate immune system, which involves the phytohormones salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), main players in signal transduction. Strategies have been developed by pathogens to manipulate plant hormonal pathways and modify the immune signaling for their own resistance enhancement in the host. Nitric oxide (NO) participates in this challenging signaling pathway shared with reactive oxygen species during plant-pathogen interaction, playing a decisive role from both adversaries. The complex crosstalk between pathogen and plant will be discussed considering the main categories of pathogens and the genetic constitution of the host. Moreover, the phytohormones signaling and their network regulation along with the involvement of NO and reactive oxygen intermediates will be revised according the recent efforts in plant biotechnology. Now, a primary challenge is to identify and characterize the host genes underlying the proteins targeted by effector molecules and to design targets for future genome editing approaches. Among the New Breeding Techniques (NBT), the application of CRISPR/Cas9 editing has become an effective tool for future reinforcement of disease resistance in crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu ME, Munné-Bosch S (2009) Salicylic acid deficiency in NahG transgenic lines and sid2 mutant’s increases seed yield in the annual plant Arabidopsis thaliana. J Exp Bot 60:1261–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813

    Article  PubMed  PubMed Central  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J (2014) Nitric oxide: an effective weapon of the plant or the pathogen? Mol Plant Pathol 15:406–416

    Article  CAS  PubMed  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J (2016) Nitric oxide in the offensive strategy of fungal and oomycete plant pathogens. Front Plant Sci 7:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Argueso CT, Ferreira FJ, Epple P, To JPC, Hutichison CE, Schaller GE, Kieber JJ (2012) Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet 8:1932

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2018) Melatonin in its relationship to plant hormones. Ann Bot 121:195–207

    Article  CAS  PubMed  Google Scholar 

  • Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932

    Article  PubMed  PubMed Central  Google Scholar 

  • Asai S, Mase K, Yoshioka H (2010) A key enzyme for flavin synthesis is required for nitric oxide and reactive oxygen species production in disease resistance. Plant J 62:911–924

    CAS  PubMed  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S, Ohsugi R (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69:26–36

    Article  CAS  PubMed  Google Scholar 

  • Baidya S, Cary JW, Grayburn WS, Calvo AM (2011) Role of nitric oxide and flavohemoglobin homolog genes in Aspergillus nidulans sexual development and mycotoxin production. Appl Environ Microbiol 77:5524–5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baliji S, Lacatus G, Sunter G (2010) The interaction between geminiovirus pathogenicity proteins and adenosine kinase leads to increased expression of primary cytokinin-responsive genes. Virology 402:238–247

    Article  CAS  PubMed  Google Scholar 

  • Batistic O, Kudla J (2009) Plant calcineurin B-like proteins and their interacting protein kinases. Biochim et Biophy Acta Molec Cell Res 1793:985–992

    Article  CAS  Google Scholar 

  • Belkhadir Y, Jaillais Y (2015) The molecular circuitry of brassinosteroid signaling. New Phytol 206:522–540

    Article  CAS  PubMed  Google Scholar 

  • Belkhadir Y, Jaillais Y, Epple P, Balsemao-Pires E, Dangl JL, Chory J (2012) Brassinosteroids modulate the efficiency of plant immune responses to microbe associated molecular patterns. Proc Natl Acad Sci U S A 109:297–302

    Article  CAS  PubMed  Google Scholar 

  • Bellin D, Asai S, Delledonne M, Yoshioka H (2013) Nitric oxide as a mediator for defense responses. Mol Plant-Microbe Interact 26:271–277

    Article  CAS  PubMed  Google Scholar 

  • Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K (2017) Evolution of hormone signaling networks in plant defense. Annu Rev Phytopathol 55:401–425

    Article  CAS  PubMed  Google Scholar 

  • Besson-Bard A, Astier J, Rasul S, Wawer I, Dubreuil-Maurizi C, Jeandroz S, Wendehenne D (2009) Current view of nitric oxide-responsive genes in plants. Plant Sci 177:302–309

    Article  CAS  Google Scholar 

  • Blanvillain-Baufume S, Reschke M, Sole M, Auguy F, Doucoure H, Szurek B, Meynard D, Portefaix M, Cunnac S, Guiderdoni E, Boch J, Koebnik R (2017) Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol J 15:306–317

    Article  CAS  PubMed  Google Scholar 

  • Block A, Alfano JR (2011) Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys. Curr Opin Microbiol 14:39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Borrego EJ, Kolomiets MV (2016) Synthesis and functions of jasmonate in maize. Planta 5:41

    Google Scholar 

  • Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A (2018) The enhancement of plant disease resistance using crispr/cas9 technology. Front Plant Sci 9:1245

    Article  PubMed  PubMed Central  Google Scholar 

  • Boter M, Ruiz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Brunner F, Rosahl S, Lee J, Rudd JJ, Geiler C, Kauppinen S, Rasmussen G, Scheel D, Nürnberger T (2002) Pep-13, a plant defense-inducing pathogen- associated pattern from Phytophthora transglutaminases. EMBO J 21:6681–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campo S, Carrascar M, Coca M, Abián J, San Segundo B (2004) The defense response of germinating maize embryos against fungal infection: a proteomics approach. Proteomics 4:383–396

    Article  CAS  PubMed  Google Scholar 

  • Campos-Bermudez VA, Fauguel CM, Tronconi MA, Casati P, Presello DA, Andreo CS (2013) Transcriptional and metabolic changes associated to the infection by Fusarium verticillioides in maize inbreds with contrasting ear rot resistance. PLoS One 8:e61580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cano-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S, Cheng JC, Nam KH, Li J, Chory J (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351

    Article  CAS  PubMed  Google Scholar 

  • Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008) Plant NB-LRR immune receptors: from recogni- tion to transcriptional reprogramming. Cell Host Microbe 3:126–135

    Article  CAS  PubMed  Google Scholar 

  • Chaki M, Fernandez-Ocana AM, Valderrama R, Carreras A, Esteban FJ, Luque F, Gomez-Rodriguez MV, Begara-Morales JC, Corpas FJ, Barroso JB (2009) Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower-mildew interaction. Plant Cell Physiol 50:265–279

    Article  CAS  PubMed  Google Scholar 

  • Chauvin A, Lenglet A, Wolfender JL, Farmer EE (2016) Paired hierarchical organization of 13-Lipoxygenases in Arabidopsis. Plan Theory 5:16

    Google Scholar 

  • Chen Z, Agnew JL, Cohen ID, He P, Shan L, Sheen L, Kunkel BN (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci U S A 104:20131–20136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB (2010) Sugar transporters for inter- cellular exchange and nutrition of pathogens. Nature 468:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Ren F, Zhou L, Wang QQ, Zhong H, Li XB (2012) The Brassica napus Calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J Exp Bot 63:6211–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung MY, Xue Y, Zhou L, Li MW, Sun SSM, Lam HM (2010) An ancient P-loop GTPase in rice is regulated by a higher plant-specific regulatory protein. J Biol Chem 285:37359–37369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi W, Hilleary R, Swanson SJ, Kim SH, Gilroy S (2016) Rapid, long-distance electrical and calcium signaling in plants. Annu Rev Plant Biol 67:287–310

    Article  CAS  PubMed  Google Scholar 

  • Choi W, Miller G, Wallace I, Harper J, Mittler R, Gilroy S (2018) Orchestrating rapid long- distance signaling in plants with Ca2+, ROS and electrical signals. Plant J 90:698–707

    Article  CAS  Google Scholar 

  • Christensen SA, Kolomiets MV (2011) The lipid language of plant–fungal interactions. Fung Genet Biol 48:4–14

    Article  CAS  Google Scholar 

  • Coghlan SE, Walters DR (1990) Polyamine metabolism in ‘green islands’ on powdery mildew infected barley leaves: possible interactions with senescence. New Phytol 116:417–424

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Palma JM, del Rio LA, Barroso JB (2009) Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol 184:9–14

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Leterrier M, Begara-Morales JC, Valderrama R, Chaki M, López-Jaramillo J, Luque F, Palma JM, Padilla MN, Sánchez-Calvo B, Mata-Pérez C, Barroso JB (2013) Inhibition of peroxisomal hydroxypyruvate reductase (HPR1) by tyrosine nitration. Biochim Biophys Acta 1830:4981–4989

    Article  CAS  PubMed  Google Scholar 

  • De Jonge R, Van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MHAJ, Thomma BPHJ (2010) Conserved fungal LysM effector Ecp6 prevents chitin- triggered immunity in plants. Science 329:953–955

    Article  PubMed  CAS  Google Scholar 

  • Delaunois B, Jeandet P, Clément C, Baillieul F, Dorey S, Cordelier S (2014) Uncovering plant-pathogen crosstalk through apoplastic proteomic studies. Front Plant Sci 5:1–18

    Article  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98:13454–13459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in Maize. Plant Physiol 145:875–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doll NM, Gilles LM, Gérentes MF, Borrelli VMG, Gendrot G, Ingram GC, Rogowsky PM, Widiez T (2019) Single and multiple gene knockouts by CRISPR–Cas9 in maize. Plant Cell Rep 38:487–501

    Article  CAS  PubMed  Google Scholar 

  • Farmer EE, Alméras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opi Plant Biol 6:372–378

    Article  CAS  Google Scholar 

  • Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102:8054–8059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felix G, Boller T (2003) Molecular sensing of bacteria in plants. J Biol Chem 278:6201–6208

    Article  CAS  PubMed  Google Scholar 

  • Ferrer-Sueta G, Radi R (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4:161–177

    Article  CAS  PubMed  Google Scholar 

  • Fister AS, Landherr L, Maximova SN, Guiltinan MJ (2018) Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front Plant Sci 9:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaupels F, Vandelle E, Yang D, Delledonne M (2011) Detection of peroxynitrite accumulation in Arabidopsis thaliana during the hypersensitive defense response. Nitric Oxide 25:222–228

    Article  CAS  PubMed  Google Scholar 

  • Giron D, Frago E, Glevarec G, Pieterse CMJ, Dicke M, Biere A (2013) Cytokinins as key regulators in plant-microbe-insect interactions: connecting plant growth and defence. Funct Ecol 27:599–609

    Article  Google Scholar 

  • Glazebrook J, Chen W, Estes B, Chang HS, Nawrath C, Métraux JP, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217–228

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: An LRR receptor like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Gong XY, Fu YP, Jiang DH, Li GQ, Yi XH, Peng YL (2007) L-arginine is essential for conidiation in the filamentous fungus Coniothyrium minitans. Fungal Genet Biol 44:1368–1379

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez ME, Marco F, Minguet EG, Carrasco-Sorli P, Blazquez MA, Carbonell J, Ruiz OA, Pieckenstain FL (2011) Perturbation of spermine synthase gene expression and transcript profiling provide new insights on the role of the tetraamine spermine in Arabidopsis defense against Pseudomonas viridiflava. Plant Physiol 156:2266–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trend Plant Sci 16:160–168

    Article  CAS  Google Scholar 

  • Gupta KJ, Hancock JT, Petrivalsky M, Kolbert Z, Lindermayr C, Durner J, Barroso JB, Palma JM, Brouquisse R, Wendehenne D, Corpas FJ, Loake GJ (2020) Recommendations on terminology and experimental best practice associated with plant nitric oxide research. New Phytol 225:1828–1834

    Article  PubMed  Google Scholar 

  • Hann DR, Domínguez-Ferreras A, Motyka V, Dobrev PI, Schornack S, Jehle A, Boller T (2014) The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. New Phytol 201:585–598

    Article  CAS  PubMed  Google Scholar 

  • Hinsch J, Galuszka P, Tudzynski P (2016) Functional characterization of the first filamentous fungal tRNA-isopentenyltransferase and its role in the virulence of Claviceps purpurea. New Phytol 211:980–992

    Article  CAS  PubMed  Google Scholar 

  • Hodson MJ, Bryant JA (2012) Functional biology of plants. Wiley-Blackwell, Oxford

    Google Scholar 

  • Hu Y, Zhang J, Jia H, Sosso D, Li T, Frommer WB, Yang B, White FF, Wang N, Jones JB (2014) Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci U S A 111:E521–E529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyodo K, Taniguchi T, Manabe Y, Kaido M, Mise K, Sugawara T, Taniguchi H, Okuno T (2015) Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus. PLoS Pathol 11(5):e1004909

    Article  CAS  Google Scholar 

  • Igari K, Endo S, Hibara K, Aida M, Sakakibara H, Kawasaki T, Tasaka M (2008) Constitutive activation of a CC-NB-LRR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. Plant J 55:14–27

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Orbovic VV, Jones J, Wang N (2016) Modification of the PthA4 effector binding elements in type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccDpthA4: dCsLOB1.3 infections. Plant Biotechnol J 14:1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Jiao J, Ma Y, Chen S, Chonghuai L, Yuyang S, Yi Q, Chunlong Y, Yanlin L (2016) Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts. Front Plant Sci 7:1387

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103:11086–11091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JG, Jeon E, Oh J, Moon JS, Hwang I (2004) Mutational analysis of Xanthomonas harpin HpaG identifies a key functional region that elicits the hypersensitive response in non-host plants. J Bacteriol 186:6239–6247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kind S, Hinsch J, Vrabka J, Hradilová M, Majeská-Čudejková M, Galuszka P (2018) Manipulation of cytokinin level in the ergot fungus Claviceps purpurea emphasizes its contribution to virulence. Curr Genet 64:1303–1319

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Yang G, Hayashi N, Kaku H, Umemura K, Iwasaki Y (2004) Alterations by a defect in a rice G-protein α subunit in probenazole and pathogen-induced responses. Plant Cell Environ 27:947–957

    Article  CAS  Google Scholar 

  • Koo AJK, Gao X, Jones AD, Howe GA (2009) A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59:974–986

    Article  CAS  PubMed  Google Scholar 

  • Ku S, Sintaha M, Cheung MY, Lam HM (2018) Plant hormone signaling cross talks between biotic and abiotic stress response. Int J Mol Sci 19:3206

    Article  PubMed Central  CAS  Google Scholar 

  • Laluk K, Mengiste T (2010) Necrotroph attacks on plants: wanton destruction or covert extortion? Arabidopsis Book 8:e0136

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamotte O, Bertoldo JB, Besson-Bard A, Rosnoblet C, Aimé S, Hichami S, Terenzi H, Wendehenne D (2015) Protein S-nitrosylation: specificity and identification strategies in plants. Front Chem 2:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lanubile A, Maschietto V, Marocco A (2014) Breeding maize for resistance to mycotoxins. In: Leslie JF, Logrieco AF (eds) Mycotoxin reduction in grain chains. John Wiley & Sons, Ltd. Chichester

    Google Scholar 

  • Lanubile A, Maschietto V, Borrelli VMG, Stagnati L, Logrieco AF, Marocco A (2017) Molecular basis of resistance to Fusarium ear rot in maize. Front Plant Sci 8:1774

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee HY, Back K (2016) Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants. J Pineal Res 60:327–335

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Back K (2017) Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J Pineal Res 62:e12379

    Article  CAS  Google Scholar 

  • Lee HY, Byeon Y, Back K (2014) Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. J Pineal Res 57:262–268

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Byeon Y, Tan DX, Reiter RJ, Back K (2015) Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. J Pineal Res 58:291–299

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Rojas CM, Oh S, Kang M, Choudhury SR, Lee HK, Allen RD, Pandey S, Mysore KS (2018) Nucleolar GTP-binding protein 1-2 (NOG1-2) interacts with jasmonate-ZIMDomain protein 9 (JAZ9) to regulate stomatal aperture during plant immunity. Int J Mol Sci 19:1922

    Article  PubMed Central  CAS  Google Scholar 

  • Lemichez E, Wu Y, Sanchez JP, Mettouchi A, Mathur J, Chua NH (2001) Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Gene Develop 15:1808–1816

    Article  CAS  Google Scholar 

  • Liese A, Romeis T (2013) Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK). Biochim Biophys Acta, Mol Cell Res 1833:1582–1589

    Article  CAS  PubMed  Google Scholar 

  • Lim GH, Singhal R, Kachroo A, Kachroo P (2017) Fatty acid- and lipid-mediated signaling in plant defense. Annu Rev Phytopathol 55:505–536

    Article  CAS  PubMed  Google Scholar 

  • Lindermayr C, Sell S, Muller B, Leister D, Durner J (2010) Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22:2894–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LM, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410:490–494

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ding P, Sun T, Nitta Y, Dong O, Huang X, Yang W, Li X, Botella JR, Zhang Y (2013) Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases. Plant Physiol 161:2146–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lochman J, Mikes V (2006) Ergosterol treatment leads to the expression of a specific set of defence-related genes in tobacco. Plant Mol Biol 62:43–51

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense response in Arabidopsis. Plant Cell 16:1938–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, Tör M, Billiar T (2007) The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220:60–81

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Duran R, Macho AP, Boutrot F, Segonzac C, Somssich IE, Zipfel C (2013) The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. elife 2:e00983

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozano-Juste J, Colom-Moreno R, León J (2011) In vivo protein tyrosine nitration in Arabidopsis thaliana. J Exp Bot 62:3501–3517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Jiao J, Fan X, Haisheng S, Ying Z, Jianfu J, Chonghuai L (2017) Endophytic bacterium Pseudomonas fluorescens RG11 may transform tryptophan to melatonin and promote endogenous melatonin levels in the roots of four grape cultivars. Front Plant Sci 7:2068

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Chen J, Wang M, Ren Y, Wang S, Lei C, Cheng Z, Sodmergen (2018) Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. J Exp Bot 69:1051–1064

    Article  CAS  PubMed  Google Scholar 

  • Malik SI, Hussain A, Yun B-W, Spoel SH, Loake GJ (2011) GSNOR mediated de-nitrosylation in the plant defence response. Plant Sci 181:540–544

    Article  CAS  PubMed  Google Scholar 

  • Malinowski R, Smith JA, Flerning AJ, Scholes JD, Rolfe SA (2012) Gall formation in clubroot-infected Arabidopsis results from an increase in existing meristematic activities of the host but is not essential for the completion of the pathogen life cycle. Plant J 71:226–238

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Nagamangala KC (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Ruiz A, Araújo IM, Izquierdo-Álvarez A, Hernansanz-Agustín P, Lamas S, Serrador JM (2013) Specificity in S-nitrosylation: a short-range mechanism for NO signaling? Antioxid Redox Signal 19:1220–1235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maschietto V, Lanubile A, De Leonardis S, Marocco A, Paciolla C (2016) Constitutive expression of pathogenesis-related proteins and antioxydant enzyme activities triggers maize resistance towards Fusarium verticillioides. J Plant Physiol 200:53–61

    Article  CAS  PubMed  Google Scholar 

  • Maschietto V, Colombi C, Pirona R, Pea G, Strozzi F, Marocco A, Rossini L, Lanubile A (2017) QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biol 17:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, Pfister B, Bayer R, Teige M (2019) The Ca2+−dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J 63:484–498

    Article  CAS  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104:19613–19618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moche M, Stremlau S, Hecht L, Gobel C, Feussner I, Stohr C (2010) Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles. Planta 231:425–436

    Article  CAS  PubMed  Google Scholar 

  • Modolo LV, Augusto O, Almeida IMG, Pinto-Maglio CAF, Oliveira HC, Seligman K, Salgado I (2006) Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae. Plant Sci 171:34–40

    Article  CAS  Google Scholar 

  • Mutka AM, Fawley S, Tsao T, Kunkel BN (2013) Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defences. Plant J 74:746–754

    Article  CAS  PubMed  Google Scholar 

  • Nambeesan S, AbuQamar S, Laluk K, Mattoo AK, Micklebart MV, Ferruzzi MG, Mengiste T, Handa AK (2012) Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiol 158:l034–l045

    Article  CAS  Google Scholar 

  • Namdjoyan S, Soorki AA, Elyasi N, Kazemi N, Simaei M (2020) Melatonin alleviates lead-induced oxidative damage in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicology 29:108–118

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Amold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signalling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Bari R, Achard P, Lison P, Nernri A, Harberd NP, Jones ID (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signalling. Curr Biol 18:650–655

    Article  CAS  PubMed  Google Scholar 

  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7:482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newman MA, Von Roepenack-Lahaye E, Parr A, Daniels MJ, Dow JM (2002) Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J 29:487–495

    Article  CAS  PubMed  Google Scholar 

  • Norman-Setterblad C, Vidal S, Palva ET (2000) Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol Plant Microb Interact 13:430–438

    Article  CAS  Google Scholar 

  • Oliveira HC, Justino GC, Sodek L, Salgado I (2009) Amino acid recovery does not prevent susceptibility to Pseudomonas syringae in nitrate reductase double-deficient Arabidopsis thaliana plants. Plant Sci 176:105–111

    Article  CAS  Google Scholar 

  • Osman H, Vauthrin S, Mikes V, Milat ML, Panabieres F, Marais A, Brunie S, Maume B, Ponchet M, Blein JP (2001) Mediation of elicitin activity on tobacco is assumed by elicitinsterol complexes. Mol Biol Cell 12:2825–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker- resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15:1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perchepied L, Balagué C, Riou C, Claudel-Renard C, Rivière N, Grezes-Besset B, Roby D (2010) Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Mol Plant-Microbe Interact 23:846–860

    Article  CAS  PubMed  Google Scholar 

  • Pinosa F, Buhot N, Kwaaitaal M, Fahlberg P, Thordal-Christensen H, Ellerström M, Andersson MX (2013) Arabidopsis phospholipase D is involved in basal defense and non-host resistance to powdery mildew fungi. Plant Physiol 163:896–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prats E, Carver TLW, Mur LAJ (2008) Pathogen-derived nitric oxide influences formation of the appressorium infection structure in the phytopathogenic fungus Blumeria graminis. Res Microbiol 159:476–480

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Yan J, Li Y, Jiang H, Sun J, Chen Q, Li H, Chu J, Yan C, Sun X, Yu Y, Li C, Li C (2012) Arabidopsis thaliana plants differentially modulate auxin biosynthesis and transport during defense responses to the necrotrophic pathogen Alternaria brassicicola. New Phytol 195:872–882

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Prado JS, Abulfaraj AA, Rayapuram N, Benhamed M, Hirt H (2018) Plant immunity: from signaling to epigenetic control of defense. Trend Plant Sci 23:833–844

    Article  CAS  Google Scholar 

  • Rasul S, Dubreuil-Maurizi C, Lamotte O, Koen E, Poinssot B, Alcaraz G, Wendehenne D, Jeandroz S (2012) Nitric oxide production mediates oligogalacturonides-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant Cell Environ 35:1483–1499

    Article  CAS  PubMed  Google Scholar 

  • Reusche M, Klásková J, Thole K, Truskina J, Novák O, Janz D, Teichmann T (2013) Stabilization of cytokinin levels enhances Arabidopsis resistance against Verticillium longisporum. Mol Plant Microb Interact 26:850–860

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M (2007) S-nitrosylation of peroxiredoxin II E promotes peroxynitrite mediated tyrosine nitration. Plant Cell 19:4120–4130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakakibara H, Kasahara H, Ueda N, Kojima M, Takei K, Hishiyama S, Yamaguchi S (2005) Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci U S A 102:9972–9977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samalova M, Johnson J, Illes M, Kelly S, Fricker M, Gurr S (2013) Nitric oxide generated by the rice blast fungus Magnaporthe oryzae drives plant infection. New Phytol 197:207–222

    Article  CAS  PubMed  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opi Plant Biol 8:369–377

    Article  CAS  Google Scholar 

  • Schulze-Lefert P, Robatzek S (2006) Plant pathogens trick guard cells into opening the gates. Cell 126:831–834

    Article  CAS  PubMed  Google Scholar 

  • Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543

    Article  CAS  PubMed  Google Scholar 

  • Silipo A, Sturiale L, Garozzo D, Erbs G, Jensen T, Lanzetta R, Dow JM, Parrilli M, Newman MA, Molinaro A (2008) The acylation and phosphorylation pattern of lipid a from Xanthomonas campestris strongly influence its ability to trigger the innate immune response in Arabidopsis. Chem Bio Chem 9:896–904

    Article  CAS  PubMed  Google Scholar 

  • Simontacchi M, García-Mata C, Bartoli CG, Santa-María GE, Lamattina L (2013) Nitric oxide as a key component in hormone-regulated processes. Plant Cell Rep 32:853–866

    Article  CAS  PubMed  Google Scholar 

  • Stohr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    Article  CAS  PubMed  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Matsuoka M, Kitano H, Asano T, Kaku H, Komatsu S (2006) gidl, a gibberellin-insensitive mutant, shows altered regulation of probenazole-inducible protein (PBZ1) in response to cold stress and pathogen attack. Plant Cell Environ 29:619–631

    Article  CAS  PubMed  Google Scholar 

  • Taylor JE, Hatcher PE, Paul ND (2004) Crosstalk between plant responses to pathogens and herbivores: a view from the outside in. J Exp Bot 55:159–168

    Article  CAS  PubMed  Google Scholar 

  • Tichá T, Sedlářová M, Činčalová L, Trojanová ZD, Mieslerová B, Lebeda A, Luhová L, Petřivalský M (2018) Involvement of S-nitrosothiols modulation by S-nitrosoglutathione reductase in defence responses of lettuce and wild Lactuca spp. to biotrophic mildews. Planta 247:1203–1215

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Trapet P, Kulik A, Lamotte O, Jeandroz S, Bourque S, Nicolas-Francès V, Rosnoblet C, Besson-Bard A, Wendehenneet D (2015) NO signaling in plant immunity: a tale of messengers. Phytochemistry 112:72–79

    Article  CAS  PubMed  Google Scholar 

  • Trdá L, Fernandez O, Boutrot F, Héloir MC, Kelloniemi J, Daire X, Adrian M, Clément C, Zipfel C, Dorey S, Poinssot B (2013) The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. New Phytol 201:1371–1384

    Article  PubMed  CAS  Google Scholar 

  • Tripathi D, Raikhi G, Kumar D (2019) Chemical elicitors of systemic acquired resistance – salicylic acid and its functional analogs. Curr Plant Biol 17:48–59

    Article  Google Scholar 

  • Trusov Y, Sewelam N, Rookes JE, Kunkel M, Nowak E, Schenk PM, Botella JR (2009) Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling. Plant J 58:69–81

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants: an overview. Plant Sign Behav 2:79–85

    Article  Google Scholar 

  • Underwood W (2012) The plant cell wall: a dynamic barrier against pathogen invasion. Front Plant Sci 3:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Baarlen P, Staats M, van Kan JAL (2004) Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. Mol Plant Pathol 5:559–574

    Article  Google Scholar 

  • Vandelle E, Delledonne M (2011) Peroxynitrite formation and function in plants. Plant Sci 181:534–539

    Article  CAS  PubMed  Google Scholar 

  • Vandelle E, Poinssot B, Wendehenne D, Bentéjac M, Alain P (2006) Integrated signaling network involving calcium, nitric oxide, and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Mol Plant-Microbe Interact 19:429–440

    Article  CAS  PubMed  Google Scholar 

  • Walters DR (2003) Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytol 159:109–115

    Article  CAS  PubMed  Google Scholar 

  • Walters DR (2015) Physiological responses of plants to attack. Wiley, Chichester

    Book  Google Scholar 

  • Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Halitschke R, Kang JH, Berg A, Harnisch F, Baldwin IT (2007) Independently silencing two JAR family members impairs levels of trypsin proteinase inhibitors but not nicotine. Planta 226:159–167

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Bai MY, Wang ZY (2014a) The brassinosteroid signaling network-a paradigm of signal integration. Curr Opin Plant Biol 21:147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014b) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–952

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhou Z, Gao J, Wu Y, Xia Z, Zhang H, Wu J (2016a) The mechanisms of maize resistance to Fusarium verticillioides by comprehensive analysis of RNA-seq data. Front Plant Sci 7:1654

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, An B, Wei Y, Reiter RJ, Shi H, Luo H, He C (2016b) Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis. Front Plant Sci 7:1882

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y (2016c) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11:e0154027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Tu M, Wang D, Liu J, Li Y, Li Z, Wang Y, Wang X (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16:844–855

    Article  CAS  PubMed  Google Scholar 

  • Wawer I, Bucholc M, Astier J, Anielska-Mazur A, Dahan J, Kulik A, Wysłouch-Cieszynska A, Zareba-Kozioł M, Krzywinska E, Dadlez M, Dobrowolska G, Wendehenne D (2010) Regulation of Nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity. Biochem J 429:73–83

    Article  CAS  PubMed  Google Scholar 

  • Wen D, Gong B, Sun S, Liu S, Wang X, Wei M, Yang F, Li Y, Shi Q (2016) Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Front Plant Sci 7:718

    Article  PubMed  PubMed Central  Google Scholar 

  • Wimalasekera R, Villar C, Begum T, Scherer GF (2011) COPPER AMINE OXIDASE1 (CuAO1) of Arabidopsis thaliana contributes to abscisic acid- and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction. Mol Plant 4:663–678

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Després C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 8:639–647

    Article  CAS  Google Scholar 

  • Yan C, Xie D (2015) Jasmonate in plant defence: sentinel or double agent? Plant Biotechnol J 13:1233–1240

    Article  PubMed  Google Scholar 

  • Yang DL, Li Q, Deng YW, Lou YG, Wang MY, Zhou GX, Zhang YY, He ZH (2008) Altered disease development in the eui mutants and eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. Mol Plant 1:528–537

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Ji W, Zhu Y, Gao P, Li Y, Cai H, Bai X, Guo D (2010) GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. J Exp Bot 61:2519–2533

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Li A, Zhao Y, Zhang Z, Zhu Y, Tan X, Geng S, Guo H, Zhang X, Kang Z, Mao L (2011) Overexpression of a wheat CCaMK gene reduces ABA sensitivity of Arabidopsis thaliana during seed germination and seedling growth. Plant Mol Biol Rep 29:681–692

    Article  CAS  Google Scholar 

  • Yun BW, Spoel SH, Loake GJ (2011) Synthesis of and signalling by small, redox active molecules in the plant immune response. Biochim Biophys Acta 1820:770–776

    Article  PubMed  CAS  Google Scholar 

  • Zhai QZ, Yan LH, Tan D, Chen R, Sun J, Gao L, Dong MQ, Wang Y, Li C (2013) Phosphorylation-coupled proteolysis of the transcription factor MYC2is important for jasmonate-signaled plant immunity. PLoS Genet 9:e1003422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XC, Wu XL, Findley S, Wan J, Libault M, Nguyen HT, Cannon SB, Stacey G (2007) Molecular evolution of lysin motif-type receptor-like kinases in plants. Plant Physiol 144:623–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wang J, Chai R, Qiu H, Jiang H, Mao X, Wang Y, Liu F, Sun G (2015) An S-(Hydroxymethyl) Glutathione dehydrogenase is involved in conidiation and full virulence in the rice blast fungus Magnaporthe oryzae. PLoS One 10:e0120627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang TQ, Lian H, Zhou CM, Xu L, Jiao Y, Wang JW (2017) A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell 29:1073–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, Vera Cruz C, Frommer WB, White FF, Yang B (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J Cell Mol Biol 82:632–643

    Article  CAS  Google Scholar 

  • Zhu H, Li GJ, Ding L, Cui X, Berg H, Assmann SM, Xia Y (2009) Arabidopsis extralarge G-protein2(XLG2) interacts with the Gβ subunit of heterotrimeric G protein and functions in disease resistance. Mol Plant 2:513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Marocco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borrelli, V., Lanubile, A., Marocco, A. (2021). Plant Hormones and Plant Defense Response Against Pathogens. In: Gupta, D.K., Corpas, F.J. (eds) Hormones and Plant Response. Plant in Challenging Environments, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-77477-6_1

Download citation

Publish with us

Policies and ethics