Skip to main content

Placentation in Equids

  • Chapter
  • First Online:
Placentation in Mammals

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 234))

Abstract

This chapter focuses on the early stages of placental development in horses and their relatives in the genus Equus and highlights unique features of equid reproductive biology. The equine placenta is classified as a noninvasive, epitheliochorial type. However, equids have evolved a minor component of invasive trophoblast, the chorionic girdle and endometrial cups, which links the equine placenta with the highly invasive hemochorial placentae of rodents and, particularly, with the primate placenta. Two types of fetus-to-mother signaling in equine pregnancy are mediated by the invasive equine trophoblast cells. First, endocrinological signaling mediated by equine chorionic gonadotrophin (eCG) drives maternal progesterone production to support the equine conceptus between days 40 and 100 of gestation. Only in primates and equids does the placenta produce a gonadotrophin, but the evolutionary paths taken by these two groups of mammals to produce this placental signal were very different. Second, florid expression of paternal major histocompatibility complex (MHC) class I molecules by invading chorionic girdle cells stimulates strong maternal anti-fetal antibody responses that may play a role in the development of immunological tolerance that protects the conceptus from destruction by the maternal immune system. In humans, invasive extravillous trophoblasts also express MHC class I molecules, but the loci involved, and their likely function, are different from those of the horse. Comparison of the cellular and molecular events in these disparate species provides outstanding examples of convergent evolution and co-option in mammalian pregnancy and highlights how studies of the equine placenta have produced new insights into reproductive strategies.

Dedicated to the memory of Professor W. R. (Twink) Allen, FRCVS, ScD, CBE, a pioneer in equine reproductive biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CL:

Corpus luteum

eCG:

Equine chorionic gonadotrophin

MHC:

Major histocompatibility complex

References

  • Abd-Elnaeim MM, Leiser R, Wilsher S, Allen WR (2006) Structural and haemovascular aspects of placental growth throughout gestation in young and aged mares. Placenta 27:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Adams AP, Antczak DF (2001) Ectopic transplantation of equine invasive trophoblast. Biol Reprod 64:753–763

    Article  CAS  PubMed  Google Scholar 

  • Adams AP, Oriol JG, Campbell RE, Oppenheim YC, Allen WR, Antczak DF (2007) The effect of skin allografting on the equine endometrial cup reaction. Theriogenology 68:237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alegre ML, Lakkis FG, Morelli AE (2016) Antigen presentation in transplantation. Trends Immunol 37:831–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aleksic D, Blaschke L, Missbach S, Hanske J, Weiss W, Handler J, Zimmermann W, Cabrera-Sharp V, Read JE, De Mestre AM, O’riordan R, Moore T, Kammerer R (2016) Convergent evolution of pregnancy-specific glycoproteins in human and horse. Reproduction 152:171–184

    Article  CAS  PubMed  Google Scholar 

  • Allen WR (1969) Factors influencing pregnant mare serum gonadotrophin production. Nature 223:64–65

    Article  CAS  PubMed  Google Scholar 

  • Allen WR (1975a) Immunological aspects of the equine endometrial cup reaction. In: Edwards RG, Howe CWS, Johnson MH (eds) Immunobiology of trophoblast. Cambridge University Press, Cambridge

    Google Scholar 

  • Allen WR (1975b) The influence of fetal genotype upon endometrial cup development and PMSG and progestagen production in equids. J Reprod Fertil Suppl 23:405–413

    CAS  Google Scholar 

  • Allen WR (1981) Use of prostaglandins for synchronization of oestrus and treatment of prolonged dioestrus in mares. Acta Vet Scand Suppl 77:227–239

    CAS  PubMed  Google Scholar 

  • Allen WR (1982) Immunological aspects of the endometrial cup reaction and the effect of xenogeneic pregnancy in horses and donkeys. J Reprod Fertil Suppl 31:57–94

    CAS  PubMed  Google Scholar 

  • Allen WR, Moor RM (1972) The origin of the equine endometrial cups. I. Production of PMSG by fetal trophoblast cells. J Reprod Fertil 29:313–316

    Article  CAS  PubMed  Google Scholar 

  • Allen WR, Short RV (1997) Interspecific and extraspecific pregnancies in equids: anything goes. J Hered 88:384–392

    Article  CAS  PubMed  Google Scholar 

  • Allen WRT, Wilsher S (2020) Historical aspects of equine embryo transfer. J Equine Vet Sci 89:102987

    Article  PubMed  Google Scholar 

  • Allen WR, Hamilton DW, Moor RM (1973) The origin of equine endometrial cups. II. Invasion of the endometrium by trophoblast. Anat Rec 177:485–501

    Article  CAS  PubMed  Google Scholar 

  • Allen WR, Kydd J, Miller J, Antczak DF (1984) Immunological studies on feto maternal relationships in equine pregnancy. Buttersworths, London

    Book  Google Scholar 

  • Allen WR, Brown L, Wright M, Wilsher S (2007) Reproductive efficiency of Flatrace and National Hunt Thoroughbred mares and stallions in England. Equine Vet J 39:438–445

    Article  CAS  PubMed  Google Scholar 

  • Allen WR, Gower S, Wilsher S (2017) Localisation of epidermal growth factor (EGF), its specific receptor (EGF-R) and aromatase at the materno-fetal interface during placentation in the pregnant mare. Placenta 50:53–59

    Article  CAS  PubMed  Google Scholar 

  • Amoroso EC (1958) Placentation. In: Parkes AS (ed) Marshall’s physiology of reproduction. Longmans, Green, and Co, London

    Google Scholar 

  • Antczak DF (1989) Maternal antibody responses in pregnancy. Curr Opin Immunol 1:1135–1140

    Article  CAS  PubMed  Google Scholar 

  • Antczak DF, Bright SM, Remick LH, Bauman BE (1982) Lymphocyte alloantigens of the horse. I. Serologic and genetic studies. Tissue Antigens 20:172–187

    Article  CAS  PubMed  Google Scholar 

  • Antczak DF, Miller JM, Remick LH (1984) Lymphocyte alloantigens of the horse. II Antibodies to ELA antigens produced during equine pregnancy. J Reprod Immunol 6:283–297

    Article  CAS  PubMed  Google Scholar 

  • Apps R, Murphy SP, Fernando R, Gardner L, Ahad T, Moffett A (2009) Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology 127:26–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong DL, Mcgowen MR, Weckle A, Pantham P, Caravas J, Agnew D, Benirschke K, Savage-Rumbaugh S, Nevo E, Kim CJ, Wagner GP, Romero R, Wildman DE (2017) The core transcriptome of mammalian placentas and the divergence of expression with placental shape. Placenta 57:71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aurich C, Weber J, Nagel C, Merkl M, Jude R, Wostmann S, Ollech D, Baron U, Olek S, Jansen T (2014) Low levels of naturally occurring regulatory T lymphocytes in blood of mares with early pregnancy loss. Reprod Fertil Dev 26:827–833

    Article  CAS  PubMed  Google Scholar 

  • Baker JM, Bamford AI, Antczak DF (1999) Modulation of allospecific CTL responses during pregnancy in equids: an immunological barrier to interspecies matings? J Immunol 162:4496–4501

    Article  CAS  PubMed  Google Scholar 

  • Ball BA (1988) Embryonic loss in mares. Incidence, possible causes, and diagnostic considerations. Vet Clin North Am Equine Pract 4:263–290

    Article  CAS  PubMed  Google Scholar 

  • Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311:374–376

    Article  CAS  PubMed  Google Scholar 

  • Battut I, Colchen S, Fieni F, Tainturier D, Bruyas JF (1997) Success rates when attempting to nonsurgically collect equine embryos at 144, 156 or 168 hours after ovulation. Equine Vet J Suppl 29:60–62

    Article  Google Scholar 

  • Bhavnani BR, Short RV, Solomon S (1969) Formation of estrogens by the pregnant mare. I. Metabolism of 7-3H-dehydroisoandrosterone and 4-14C-androstenedione injected into the umbilical vein. Endocrinology 85:1172–1179

    Article  CAS  PubMed  Google Scholar 

  • Bhavnani BR, Short RV, Solomon S (1971) Formation of estrogens by the pregnant mare. II. Metabolism of 14C-acetate and 3H-cholesterol injected into the fetal circulation. Endocrinology 89:1152–1157

    Article  CAS  PubMed  Google Scholar 

  • Blois SM, Ilarregui JM, Tometten M, Garcia M, Orsal AS, Cordo-Russo R, Toscano MA, Bianco GA, Kobelt P, Handjiski B, Tirado I, Markert UR, Klapp BF, Poirier F, Szekeres-Bartho J, Rabinovich GA, Arck PC (2007) A pivotal role for galectin-1 in fetomaternal tolerance. Nat Med 13:1450–1457

    Article  CAS  PubMed  Google Scholar 

  • Bousfield GR, Sugino H, Ward DN (1985) Demonstration of a COOH-terminal extension on equine lutropin by means of a common acid-labile bond in equine lutropin and equine chorionic gonadotropin. J Biol Chem 260:9531–9533

    Article  CAS  PubMed  Google Scholar 

  • Bousfield GR, Butnev VY, Gotschall RR, Baker VL, Moore WT (1996) Structural features of mammalian gonadotropins. Mol Cell Endocrinol 125:3–19

    Article  CAS  PubMed  Google Scholar 

  • Bright S, Antczak DF, Ricketts S (1978) Studies on equine leukocyte antigens. J Equine Med Surg Suppl 1:229–236

    Google Scholar 

  • Brosnahan MM, Miller DC, Adams M, Antczak DF (2012) IL-22 is expressed by the invasive trophoblast of the equine (Equus caballus) chorionic girdle. J Immunol 188:4181–4187

    Article  CAS  PubMed  Google Scholar 

  • Brosnahan MM, Silvela EJ, Crumb J, Miller DC, Erb HN, Antczak DF (2016) Ectopic trophoblast allografts in the horse resist destruction by secondary immune responses. Biol Reprod 95:135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E (2002) Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab 87:2954–2959

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Sharp V, Read JE, Richardson S, Kowalski AA, Antczak DF, Cartwright JE, Mukherjee A, De Mestre AM (2014) SMAD1/5 signaling in the early equine placenta regulates trophoblast differentiation and chorionic gonadotropin secretion. Endocrinology 155:3054–3064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carnevale EM, Maclellan LJ, Stokes JAE (2019) In vitro culture of embryos from horses. Methods Mol Biol 2006:219–227

    Article  CAS  PubMed  Google Scholar 

  • Carter AM, Enders AC (2013) The evolution of epitheliochorial placentation. Annu Rev Anim Biosci 1:443–467

    Article  PubMed  Google Scholar 

  • Carter AM, Mess A (2007) Evolution of the placenta in eutherian mammals. Placenta 28:259–262

    Article  CAS  PubMed  Google Scholar 

  • Clegg MT, Boda JM, Cole HH (1954) The endometrial cups and allantochorionic pouches in the mare with emphasis on the source of equine gonadotrophin. Endocrinology 54:448–463

    Article  CAS  PubMed  Google Scholar 

  • Clutton-Brock J (1992) Horse power: a history of the horse and the donkey in human societies. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Cole LA (2010) Biological functions of hCG and hCG-related molecules. Reprod Biol Endocrinol 8:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cole HH, Goss H (1943) The source of equine gonadotropin. Essays in Biology in Honor of Herbert M Evans. University of California Press, Berkeley

    Google Scholar 

  • Cole HH, Hart GH (1930) The potency of blood serum of mares in progressive stages of pregnancy in effecting the sexual maturity of the immature rat. Am J Physiol 93:57–68

    Article  CAS  Google Scholar 

  • Croy BA, Chantakru S, Esadeg S, Ashkar AA, Wei Q (2002) Decidual natural killer cells: key regulators of placental development (a review). J Reprod Immunol 57:151–168

    Article  CAS  PubMed  Google Scholar 

  • Daels PF, Albrecht BA, Mohammed HO (1998) Equine chorionic gonadotropin regulates luteal steroidogenesis in pregnant mares. Biol Reprod 59:1062–1068

    Article  CAS  PubMed  Google Scholar 

  • Davies CJ, Antczak DF, Allen WR (1985) Reproduction in mules: embryo transfer using sterile recipients. Equine Vet J Suppl 3:63–67.

    Google Scholar 

  • De Mestre AM, Miller D, Roberson MS, Liford J, Chizmar LC, Mclaughlin KE, Antczak DF (2009) Glial cells missing homologue 1 is induced in differentiating equine chorionic girdle trophoblast cells. Biol Reprod 80:227–234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Mestre A, Noronha L, Wagner B, Antczak DF (2010) Split immunological tolerance to trophoblast. Int J Dev Biol 54:445–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Mestre AM, Hanlon D, Adams AP, Runcan E, Leadbeater JC, Erb HN, Costa CC, Miller D, Allen WR, Antczak DF (2011) Functions of ectopically transplanted invasive horse trophoblast. Reproduction 141:849–856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Mestre AM, Rose BV, Chang YM, Wathes DC, Verheyen KLP (2019) Multivariable analysis to determine risk factors associated with early pregnancy loss in thoroughbred broodmares. Theriogenology 124:18–23

    Article  PubMed  Google Scholar 

  • Devroey P, Bourgain C, Macklon NS, Fauser BC (2004) Reproductive biology and IVF: ovarian stimulation and endometrial receptivity. Trends Endocrinol Metab 15:84–90

    Article  CAS  PubMed  Google Scholar 

  • Dewolf S, Sykes M (2017) Alloimmune T cells in transplantation. J Clin Invest 127:2473–2481

    Article  PubMed  PubMed Central  Google Scholar 

  • Dini P, Carossino M, Balasuriya UBR, Ali HE, Loux SC, Esteller-Vico A, Scoggin KE, Loynachan AT, Kalbfleisch T, De Spiegelaere W, Daels P, Ball BA (2021) Paternally expressed retrotransposon gag like 1 gene, RTL1, is one of the crucial elements for placental angiogenesis in horses. Biol Reprod:ioab039

    Google Scholar 

  • Donaldson WL, Zhang CH, Oriol JG, Antczak DF (1990) Invasive equine trophoblast expresses conventional class I major histocompatibility complex antigens. Development 110:63–71

    Article  CAS  PubMed  Google Scholar 

  • Donaldson WL, Oriol JG, Plavin A, Antczak DF (1992) Developmental regulation of class I major histocompatibility complex antigen expression by equine trophoblastic cells. Differentiation 52:69–78

    Article  CAS  PubMed  Google Scholar 

  • Enders AC, Liu IKM (1991) Lodgement of the equine blastocyst in the uterus from fixation through endometrial cup formation. J Reprod Fertil Suppl 44:427–438

    CAS  PubMed  Google Scholar 

  • Evans MJ, Irvine CH (1975) Serum concentrations of FSH, LH and progesterone during the oestrous cycle and early pregnancy in the mare. J Reprod Fertil Suppl 23:193–200

    CAS  Google Scholar 

  • Ewart J (1897) A critical period in the development of the horse. Adam and Charles Black, London

    Book  Google Scholar 

  • Fedorka CE, Loux SL, Scoggin KE, Adams AA, Troedsson MHT, Ball BA (2019) Alterations in T cell-related transcripts at the feto-maternal interface throughout equine gestation. Placenta 89:78–87

    Article  PubMed  CAS  Google Scholar 

  • Filant J, Spencer TE (2014) Uterine glands: biological roles in conceptus implantation, uterine receptivity and decidualization. Int J Dev Biol 58:107–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flaminio MJ, Antczak DF (2005) Inhibition of lymphocyte proliferation and activation: a mechanism used by equine invasive trophoblast to escape the maternal immune response. Placenta 26:148–159

    Article  CAS  PubMed  Google Scholar 

  • Fonseca JF, Souza-Fabjan JM, Oliveira ME, Leite CR, Nascimento-Penido PM, Brandão FZ, Lehloenya KC (2016) Nonsurgical embryo recovery and transfer in sheep and goats. Theriogenology 86:144–151

    Article  PubMed  Google Scholar 

  • Frost JM, Moore GE (2010) The importance of imprinting in the human placenta. PLoS Genet 6:e1001015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Futas J, Oppelt J, Janova E, Musilova P, Horin P (2020) Complex variation in the KLRA (LY49) immunity-related genomic region in horses. HLA 96:257–267

    Article  CAS  PubMed  Google Scholar 

  • Gambini A, Maserati M (2017) A journey through horse cloning. Reprod Fertil Dev 30:8–17

    Article  PubMed  Google Scholar 

  • Geisert RD, Whyte JJ, Meyer AE, Mathew DJ, Juarez MR, Lucy MC, Prather RS, Spencer TE (2017) Rapid conceptus elongation in the pig: an interleukin 1 beta 2 and estrogen-regulated phenomenon. Mol Reprod Dev 84:760–774

    Article  CAS  PubMed  Google Scholar 

  • Gerri C, Mccarthy A, Alanis-Lobato G, Demtschenko A, Bruneau A, Loubersac S, Fogarty NME, Hampshire D, Elder K, Snell P, Christie L, David L, Van De Velde H, Fouladi-Nashta AA, Niakan KK (2020) Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature 587:443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginther OJ (2014) How ultrasound technologies have expanded and revolutionized research in reproduction in large animals. Theriogenology 81:112–125

    Article  CAS  PubMed  Google Scholar 

  • Gray AP (1972) Mammalian hybrids: a check-list with bibliography. Commonwealth Agricultural Bureaux, Slough

    Google Scholar 

  • Gridelet V, Perrier D'hauterive S, Polese B, Foidart JM, Nisolle M, Geenen V (2020) Human chorionic gonadotrophin: new pleiotropic functions for an “old” hormone during pregnancy. Front Immunol 11:343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunig G, Triplett L, Canady LK, Allen WR, Antczak DF (1995) The maternal leucocyte response to the endometrial cups in horses is correlated with the developmental stages of the invasive trophoblast cells. Placenta 16:539–559

    Article  CAS  PubMed  Google Scholar 

  • Hamilton DW, Allen WR, Moor RM (1973) The origin of equine endometrial cups. 3. Light and electron microscopic study of fully developed equine endometrial cups. Anat Rec 177:503–517

    Article  CAS  PubMed  Google Scholar 

  • Hanlon DW, Stevenson M, Evans MJ, Firth EC (2012) Reproductive performance of thoroughbred mares in the Waikato region of New Zealand: 1. Descriptive analyses. N Z Vet J 60:329–334

    Article  CAS  PubMed  Google Scholar 

  • Hansen PJ (2020) Implications of assisted reproductive technologies for pregnancy outcomes in mammals. Annu Rev Anim Biosci 8:395–413

    Article  PubMed  Google Scholar 

  • Hendriks WK, Colleoni S, Galli C, Paris D, Colenbrander B, Stout TAE (2019) Mitochondrial DNA replication is initiated at blastocyst formation in equine embryos. Reprod Fertil Dev 31:570–578

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs K (2018) Assisted reproductive techniques in mares. Reprod Domest Anim 53:4–13

    Article  CAS  PubMed  Google Scholar 

  • Huynh KD, Lee JT (2001) Imprinted X inactivation in eutherians: a model of gametic execution and zygotic relaxation. Curr Opin Cell Biol 13:690–697

    Article  CAS  PubMed  Google Scholar 

  • Iqbal K, Chitwood JL, Meyers-Brown GA, Roser JF, Ross PJ (2014) RNA-seq transcriptome profiling of equine inner cell mass and trophectoderm. Biol Reprod 90:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones CJ, Choudhury RH, Aplin JD (2015) Tracking nutrient transfer at the human maternofetal interface from 4 weeks to term. Placenta 36:372–380

    Article  CAS  PubMed  Google Scholar 

  • Kammerer R, BallesterosA BD, Warren J, Williams JM, Moore T, Dveksler G (2020) Equine pregnancy-specific glycoprotein CEACAM49 secreted by endometrial cup cells activates TGFB. Reproduction 160:685–694

    Article  CAS  PubMed  Google Scholar 

  • Kinder JM, Turner LH, Stelzer IA, Miller-Handley H, Burg A, Shao TY, Pham G, Way SS (2020) CD8(+) T cell functional exhaustion overrides pregnancy-induced fetal antigen Alloimmunization. Cell Rep 31:107784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein C (2016) Early pregnancy in the mare: old concepts revisited. Domest Anim Endocrinol 56(Suppl):S212–S217

    Article  CAS  PubMed  Google Scholar 

  • Klohonatz KM, Hess AM, Hansen TR, Squires EL, Bouma GJ, Bruemmer JE (2015) Equine endometrial gene expression changes during and after maternal recognition of pregnancy. J Anim Sci 93:3364–3376

    Article  CAS  PubMed  Google Scholar 

  • Kydd J, Miller J, Antczak DF, Allen WR (1982) Maternal anti-fetal cytotoxic antibody responses of equids during pregnancy. J Reprod Fertil Suppl 32:361–369

    CAS  PubMed  Google Scholar 

  • Lea RG, Bolton AE (1991) The effect of horse placental tissue extracts and equine chorionic gonadotrophin on the proliferation of horse lymphocytes stimulated in vitro. J Reprod Immunol 19:13–23

    Article  CAS  PubMed  Google Scholar 

  • Leemans B, Gadella BM, Stout TA, De Schauwer C, Nelis H, Hoogewijs M, Van Soom A (2016) Why doesn’t conventional IVF work in the horse? The equine oviduct as a microenvironment for capacitation/fertilization. Reproduction 152:R233–R245

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Sugino H, Miura M, Bousfield GR, Ward DN, Titani K, Mizuochi T (1991) Beta-subunits of equine chorionic gonadotropin and lutenizing hormone with an identical amino acid sequence have different asparagine-linked oligosaccharide chains. Biochem Biophys Res Commun 174:940–945

    Article  CAS  PubMed  Google Scholar 

  • Mcgrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    Article  CAS  PubMed  Google Scholar 

  • Medicine PCOASFR (2008) Gonadotropin preparations: past, present, and future perspectives. Fertil Steril 90:S13–S20

    Article  Google Scholar 

  • Meeusen EN, Bischof RJ, Lee CS (2001) Comparative T-cell responses during pregnancy in large animals and humans. Am J Reprod Immunol 46:169–179

    Article  CAS  PubMed  Google Scholar 

  • Mikkola M, Hasler JF, Taponen J (2019) Factors affecting embryo production in superovulated Bos taurus cattle. Reprod Fertil Dev 32:104–124

    Article  CAS  PubMed  Google Scholar 

  • Moffett A, Colucci F (2014) Uterine NK cells: active regulators at the maternal-fetal interface. J Clin Invest 124:1872–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris LHA (2018) The development of in vitro embryo production in the horse. Equine Vet J 50:712–720

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Shirouzu T, Nakata K, Yoshimura N, Ushigome H (2019) The role of major histocompatibility complex in organ transplantation-donor specific anti-major histocompatibility complex antibodies analysis goes to the next stage. Int J Mol Sci 20:4544

    Article  CAS  PubMed Central  Google Scholar 

  • Naranjo Chacón F, Montiel Palacios F, Canseco Sedano R, Ahuja-Aguirre C (2020) Embryo production after superovulation of bovine donors with a reduced number of FSH applications and an increased eCG dose. Theriogenology 141:168–172

    Article  PubMed  CAS  Google Scholar 

  • Noronha LE, Antczak DF (2010) Maternal immune responses to trophoblast: the contribution of the horse to pregnancy immunology. Am J Reprod Immunol 64:231–244

    Article  PubMed  Google Scholar 

  • Noronha LE, Antczak DF (2012) Modulation of T-cell reactivity during equine pregnancy is antigen independent. Am J Reprod Immunol 68:107–115

    Article  CAS  PubMed  Google Scholar 

  • Noronha LE, Harman RM, Wagner B, Antczak DF (2012a) Generation and characterization of monoclonal antibodies to equine NKp46. Vet Immunol Immunopathol 147:60–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noronha LE, Huggler KE, De Mestre AM, Miller DC, Antczak DF (2012b) Molecular evidence for natural killer-like cells in equine endometrial cups. Placenta 33:379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivera R, Moro LN, Jordan R, Pallarols N, Guglielminetti A, Luzzani C, Miriuka SG, Vichera G (2018) Bone marrow mesenchymal stem cells as nuclear donors improve viability and health of cloned horses. Stem Cells Cloning 11:13–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oriol JG (1994) The equine embryonic capsule: practical implications of recent research. Equine Vet J 26:184–186

    Article  CAS  PubMed  Google Scholar 

  • Oriol JG, Betteridge KJ, Clarke AJ, Sharom FJ (1993) Mucin-like glycoproteins in the equine embryonic capsule. Mol Reprod Dev 34:255–265

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Rodriguez JM, Ortega-Ferrusola C, Gil MC, Martin-Cano FE, Gaitskell-Phillips G, Rodriguez-Martinez H, Hinrichs K, Alvarez-Barrientos A, Roman A, Pena FJ (2019) Transcriptome analysis reveals that fertilization with cryopreserved sperm downregulates genes relevant for early embryo development in the horse. PLoS One 14:e0213420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer E, Bézard J, Magistrini M, Duchamp G (1991) In vitro fertilization in the horse. A retrospective study. J Reprod Fertil Suppl 44:375–384

    CAS  PubMed  Google Scholar 

  • Papkoff H (1981) Variations in the properties of equine chorionic gonadotropin. Theriogenology 15:1–11

    Article  CAS  PubMed  Google Scholar 

  • Pashen RL, Allen WR (1979) The role of the fetal gonads and placenta in steroid production, maintenance of pregnancy and parturition in the mare. J Reprod Fertil Suppl 27:499–509

    Google Scholar 

  • Pashen RL, Sheldrick EL, Allen WR, Flint AP (1982) Dehydroepiandrosterone synthesis by the fetal foal and its importance as an oestrogen precursor. J Reprod Fertil Suppl 32:389–397

    CAS  PubMed  Google Scholar 

  • Piliszek A, Madeja ZE (2018) Pre-implantation development of domestic animals. Curr Top Dev Biol 128:267–294

    Article  CAS  PubMed  Google Scholar 

  • Policastro P, Ovitt CE, Hoshina M, Fukuoka H, Boothby MR, Boime I (1983) The beta subunit of human chorionic gonadotropin is encoded by multiple genes. J Biol Chem 258:11492–11499

    Article  CAS  PubMed  Google Scholar 

  • Posfai E, Rovic I, Jurisicova A (2019) The mammalian embryo’s first agenda: making trophectoderm. Int J Dev Biol 63:157–170

    Article  CAS  PubMed  Google Scholar 

  • Rambags BP, Krijtenburg PJ, Drie HF, Lazzari G, Galli C, Pearson PL, Colenbrander B, Stout TA (2005) Numerical chromosomal abnormalities in equine embryos produced in vivo and in vitro. Mol Reprod Dev 72:77–87

    Article  CAS  PubMed  Google Scholar 

  • Rawn SM, Cross JC (2008) The evolution, regulation, and function of placenta-specific genes. Annu Rev Cell Dev Biol 24:159–181

    Article  CAS  PubMed  Google Scholar 

  • Read JE, Cabrera-Sharp V, Kitscha P, Cartwright JE, King PJ, Fowkes RC, De Mestre AM (2018a) Glial cells missing 1 regulates equine chorionic gonadotrophin Beta subunit via binding to the proximal promoter. Front Endocrinol (Lausanne) 9:195

    Article  Google Scholar 

  • Read JE, Cabrera-Sharp V, Offord V, Mirczuk SM, Allen SP, Fowkes RC, De Mestre AM (2018b) Dynamic changes in gene expression and signalling during trophoblast development in the horse. Reproduction 156:313–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renfree MB, Suzuki S, Kaneko-Ishino T (2013) The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc Lond B Biol Sci 368:20120151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rizzo M, Ducheyne KD, Deelen C, Beitsma M, Cristarella S, Quartuccio M, Stout TAE, De Ruijter-Villani M (2019) Advanced mare age impairs the ability of in vitro-matured oocytes to correctly align chromosomes on the metaphase plate. Equine Vet J 51:252–257

    Article  CAS  PubMed  Google Scholar 

  • Robbin MG, Wagner B, Noronha LE, Antczak DF, De Mestre AM (2011) Subpopulations of equine blood lymphocytes expressing regulatory T cell markers. Vet Immunol Immunopathol 140:90–101

    Article  CAS  PubMed  Google Scholar 

  • Rock KL, Reits E, Neefjes J (2016) Present yourself! By MHC class I and MHC class II molecules. Trends Immunol 37:724–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roser JF, Meyers-Brown G (2019) Enhancing fertility in mares: recombinant equine gonadotropins. J Equine Vet Sci 76:6–13

    Article  PubMed  Google Scholar 

  • Rowe JH, Ertelt JM, Xin L, Way SS (2013) Regulatory T cells and the immune pathogenesis of prenatal infection. Reproduction 146:R191–R203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutz S, Eidenschenk C, Ouyang W (2013) IL-22, not simply a Th17 cytokine. Immunol Rev 252:116–132

    Article  PubMed  CAS  Google Scholar 

  • Salvany-Celades M, Van Der Zwan A, Benner M, Setrajcic-Dragos V, Bougleux Gomes HA, Iyer V, Norwitz ER, Strominger JL, Tilburgs T (2019) Three types of functional regulatory T cells control T cell responses at the human maternal-fetal interface. Cell Rep 27:2537–2547 e5

    Article  CAS  PubMed  Google Scholar 

  • Samuel CA, Allen WR, Steven DH (1975) Ultrastructural development of the equine placenta. J Reprod Fertil Suppl 23:575–578

    Google Scholar 

  • Samuel CA, Allen WR, Steven DH (1976) Studies on the equine placenta II. Ultrastructure of the placental barrier. J Reprod Fertil 48:257–264

    Article  CAS  PubMed  Google Scholar 

  • Schauder W (1912) Untersuchungen uber die eithaute und Embryotrophe des pferdes. Arch Anat Physiol 192:259–302

    Google Scholar 

  • Scholtz EL, Krishnan S, Ball BA, Corbin CJ, Moeller BC, Stanley SD, Mcdowell KJ, Hughes AL, Mcdonnell DP, Conley AJ (2014) Pregnancy without progesterone in horses defines a second endogenous biopotent progesterone receptor agonist, 5alpha-dihydroprogesterone. Proc Natl Acad Sci U S A 111:3365–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher A (2017) Human chorionic gonadotropin as a pivotal endocrine immune regulator initiating and preserving fetal tolerance. Int J Mol Sci 18:2166

    Article  PubMed Central  CAS  Google Scholar 

  • Schumacher A, Zenclussen AC (2019) Human chorionic gonadotropin-mediated immune responses that facilitate embryo implantation and placentation. Front Immunol 10:2896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman GB, Wolfe MW, Farmerie TA, Clay CM, Threadgill DS, Sharp DC, Nilson JH (1992) A single gene encodes the beta-subunits of equine luteinizing hormone and chorionic gonadotropin. Mol Endocrinol 6:951–959

    CAS  PubMed  Google Scholar 

  • Shilton CA, Kahler A, Davis BW, Crabtree JR, Crowhurst J, Mcgladdery AJ, Wathes DC, Raudsepp T, De Mestre AM (2020) Whole genome analysis reveals aneuploidies in early pregnancy loss in the horse. Sci Rep 10:13314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Short RV (1975) The contribution of the mule to scientific thought. J Reprod Fertil Suppl 23:359–364

    Google Scholar 

  • Smits K, De Coninck DI, Van Nieuwerburgh F, Govaere J, Van Poucke M, Peelman L, Deforce D, Van Soom A (2016) The equine embryo influences immune-related gene expression in the oviduct. Biol Reprod 94:36

    Article  PubMed  CAS  Google Scholar 

  • Smits K, Willems S, Van Steendam K, Van De Velde M, De Lange V, Ververs C, Roels K, Govaere J, Van Nieuwerburgh F, Peelman L, Deforce D, Van Soom A (2018) Proteins involved in embryo-maternal interaction around the signalling of maternal recognition of pregnancy in the horse. Sci Rep 8:5249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sommer JR, Collins EB, Estrada JL, Petters RM (2007) Synchronization and superovulation of mature cycling gilts for the collection of pronuclear stage embryos. Anim Reprod Sci 100:402–410

    Article  CAS  PubMed  Google Scholar 

  • Squires E (2020) Current reproductive technologies impacting equine embryo production. J Equine Vet Sci 89:102981

    Article  PubMed  Google Scholar 

  • Squires EL, Ginther OJ (1975) Follicular and luteal development in pregnant mares. J Reprod Fertil Suppl 23:429–433

    CAS  Google Scholar 

  • Stabenfeldt GH, Hughes JP, Evans JW, Neely DP (1974) Spontaneous prolongation of luteal activity in the mare. Equine Vet J 6:158–163

    Article  CAS  PubMed  Google Scholar 

  • Stout TAE (2020) Clinical application of in vitro embryo production in the horse. J Equine Vet Sci 89:103011

    Article  PubMed  Google Scholar 

  • Stout TA, Lamming GE, Allen WR (2000) The uterus as a source of oxytocin in cyclic mares. J Reprod Fertil Suppl 56:281–287

    Google Scholar 

  • Tachibana Y, Nakano Y, Nagaoka K, Kikuchi M, Nambo Y, Haneda S, Matsui M, Miyake Y, Imakawa K (2013) Expression of endometrial immune-related genes possibly functioning during early pregnancy in the mare. J Reprod Dev 59:85–91

    Article  CAS  PubMed  Google Scholar 

  • Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256:640–642

    Article  CAS  PubMed  Google Scholar 

  • Takeo T, Nakagata N (2015) Superovulation using the combined administration of inhibin antiserum and equine chorionic gonadotropin increases the number of ovulated oocytes in C57BL/6 female mice. PLoS One 10:e0128330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Than NG, Romero R, Goodman M, Weckle A, Xing J, Dong Z, Xu Y, Tarquini F, Szilagyi A, Gal P, Hou Z, Tarca AL, Kim CJ, Kim JS, Haidarian S, Uddin M, Bohn H, Benirschke K, Santolaya-Forgas J, Grossman LI, Erez O, Hassan SS, Zavodszky P, Papp Z, Wildman DE (2009) A primate subfamily of galectins expressed at the maternal-fetal interface that promote immune cell death. Proc Natl Acad Sci U S A 106:9731–9736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyooka Y (2020) Trophoblast lineage specification in the mammalian preimplantation embryo. Reprod Med Biol 19:209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC, Erice Imprinting G (2019) Genomic imprinting and physiological processes in mammals. Cell 176:952–965

    Article  CAS  PubMed  Google Scholar 

  • Urwin VE, Allen WR (1982) Pituitary and chorionic gonadotrophic control of ovarian function during early pregnancy in equids. J Reprod Fertil Suppl 32:371–381

    CAS  PubMed  Google Scholar 

  • Valenzuela OA, Couturier-Tarrade A, Choi YH, Aubriere MC, Ritthaler J, Chavatte-Palmer P, Hinrichs K (2018) Impact of equine assisted reproductive technologies (standard embryo transfer or intracytoplasmic sperm injection (ICSI) with in vitro culture and embryo transfer) on placenta and foal morphometry and placental gene expression. Reprod Fertil Dev 30:371–379

    Article  PubMed  Google Scholar 

  • Van Niekerk CH, Gerneke WH (1966) Persistence and parthenogentic cleavage of tubal ova in the mare. Onderstepoort J Vet Res 33:195–232

    PubMed  Google Scholar 

  • Vitez SF, Forman EJ, Williams Z (2019) Preimplantation genetic diagnosis in early pregnancy loss. Semin Perinatol 43:116–120

    Article  PubMed  Google Scholar 

  • Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blocker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, Macleod JN, Penedo MC, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guerin G, Hasegawa T, Hill EW, Jurka J, Kiialainen A, Lindgren G, Liu J, Magnani E, Mickelson JR, Murray J, Nergadze SG, Onofrio R, Pedroni S, Piras MF, Raudsepp T, Rocchi M, Roed KH, Ryder OA, Searle S, Skow L, Swinburne JE, Syvanen AC, Tozaki T, Valberg SJ, Vaudin M, White JR, Zody MC, Broad Institute Genome Sequencing P, Broad Institute Whole Genome Assembly T, Lander ES, Lindblad-Toh K (2009) Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326:865–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Miller DC, Clark AG, Antczak DF (2012) Random X inactivation in the mule and horse placenta. Genome Res 22:1855–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Miller DC, Harman R, Antczak DF, Clark AG (2013) Paternally expressed genes predominate in the placenta. Proc Natl Acad Sci U S A 110:10705–10710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber JA, Freeman DA, Vanderwall DK, Woods GL (1991) Prostaglandin E2 secretion by oviductal transport-stage equine embryos. Biol Reprod 45:540–543

    Article  CAS  PubMed  Google Scholar 

  • Wildman DE (2011) Review: toward an integrated evolutionary understanding of the mammalian placenta. Placenta 32:S142–S145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wildman DE, Chen C, Erez O, Grossman LI, Goodman M, Romero R (2006) Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc Natl Acad Sci U S A 103:3203–3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilsher S, Allen WR (2003) The effects of maternal age and parity on placental and fetal development in the mare. Equine Vet J 35:476–483

    Article  CAS  PubMed  Google Scholar 

  • Wilsher S, Allen WR (2011) Intrauterine administration of plant oils inhibits luteolysis in the mare. Equine Vet J 43:99–105

    Article  CAS  PubMed  Google Scholar 

  • Wilsher S, Allen WR (2012) Factors influencing placental development and function in the mare. Equine Vet J Suppl 41:113–119

    Article  Google Scholar 

  • Wilsher S, Newcombe JR, Allen WR (2019) The immunolocalization of Galectin-1 and progesterone-induced blocking factor (PIBF) in equine trophoblast: possible roles in trophoblast invasion and the immunological protection of pregnancy. Placenta 85:32–39

    Article  CAS  PubMed  Google Scholar 

  • Wooding FB, Morgan G, Fowden AL, Allen WR (2001) A structural and immunological study of chorionic gonadotrophin production by equine trophoblast girdle and cup cells. Placenta 22:749–767

    Article  CAS  PubMed  Google Scholar 

  • Woods GL, Baker CB, Baldwin JL, Ball BA, Bilinski J, Cooper WL, Ley WB, Mank EC, Erb HN (1987) Early pregnancy loss in brood mares. J Reprod Fertil Suppl 35:455–459

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the many members of our laboratories (students, advanced trainees, and scientific and horse care staff) whose efforts over many years made major contributions to the information provided in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas F. Antczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antczak, D.F., Allen, W.R.(. (2021). Placentation in Equids. In: Geisert, R.D., Spencer, T. (eds) Placentation in Mammals. Advances in Anatomy, Embryology and Cell Biology, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-030-77360-1_6

Download citation

Publish with us

Policies and ethics