Skip to main content

Placentation in the Human and Higher Primates

  • Chapter
  • First Online:
Placentation in Mammals

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 234))

Abstract

Placentation in humans is precocious and highly invasive compared to other mammals. Implantation is interstitial, with the conceptus becoming completely embedded within the endometrium towards the end of the second week post-fertilization. Villi initially form over the entire surface of the chorionic sac, stimulated by histotrophic secretions from the endometrial glands. The secondary yolk sac never makes contact with the chorion, and a choriovitelline placenta is never established. However, recent morphological and transcriptomic analyses suggest that the yolk sac plays an important role in the uptake of nutrients from the coelomic fluid. Measurements performed in vivo demonstrate that early development takes place in a physiological, low-oxygen environment that protects against teratogenic free radicals and maintains stem cells in a multipotent state. The maternal arterial circulation to the placenta is only fully established around 10–12 weeks of gestation. By then, villi have regressed over the superficial, abembryonic pole, leaving the definitive discoid placenta, which is of the villous, hemochorial type. Remodeling of the maternal spiral arteries is essential to ensure a high-volume but low-velocity inflow into the mature placenta. Extravillous trophoblast cells migrate from anchoring villi and surround the arteries. Their interactions with maternal immune cells release cytokines and proteases that are key to remodeling, and a successful pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas Y, Oefner CM, Polacheck WJ, Gardner L, Farrell L, Sharkey A, Kamm R, Moffett A, Oyen ML (2017) A microfluidics assay to study invasion of human placental trophoblast cells. J R Soc Interface 14:20170131

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Lamki RS, Skepper JN, Burton GJ (1999) Are human placental bed giant cells merely aggregates of small mononuclear trophoblast cells? An ultrastructural and immunocytochemical study. Hum Reprod 14:496–504

    Article  CAS  PubMed  Google Scholar 

  • Aplin JD, Whittaker H, Jana Lim YT, Swietlik S, Charnock J, Jones CJ (2015) Hemangioblastic foci in human first trimester placenta: distribution and gestational profile. Placenta 36:1069–1077

    Article  PubMed  Google Scholar 

  • Arias-Stella J (2002) The Arias-Stella reaction: facts and fancies four decades after. Adv Anat Pathol 9:12–23

    Article  PubMed  Google Scholar 

  • Benirschke K, Burton GJ, Baergen RN (2012) Pathology of the human placenta. Springer, Heidelberg

    Book  Google Scholar 

  • Bentin-Ley U, Horn T, Sjogren A, Sorensen S, Falck Larsen J, Hamberger L (2000) Ultrastructure of human blastocyst-endometrial interactions in vitro. J Reprod Fertil 120:337–350

    Article  CAS  PubMed  Google Scholar 

  • Blankenship TN, Enders AC (2003) Modification of uterine vasculature during pregnancy in macaques. Microsc Res Tech 60:390–401

    Article  PubMed  Google Scholar 

  • Boss AL, Chamley LW, James JL (2018) Placental formation in early pregnancy: how is the centre of the placenta made? Hum Reprod Update 24:750–760

    Article  CAS  PubMed  Google Scholar 

  • Boyd JD, Hamilton WJ (1970) The human placenta. Heffer and Sons, Cambridge

    Book  Google Scholar 

  • Braude P, Bolton V, Moore S (1988) Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332:459–461

    Article  CAS  PubMed  Google Scholar 

  • Brent RL, Fawcett LB (1998) Nutritional studies of the embryo during early organogenesis with normal embryos and embryos exhibiting yolk sac dysfunction. J Pediatr 132:S6–S16

    Article  CAS  PubMed  Google Scholar 

  • Brosens I, Pijnenborg R, Vercruysse L, Romero R (2011) The “great obstetrical syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol 204:193–201

    Article  PubMed  Google Scholar 

  • Buffe D, Rimbaut C, Gaillard JA (1993) Alpha-fetoprotein and other proteins in the huamn yolk sac. In: Nogales FF (ed) The human yolk sac and yolk sac tumours. Springer-Verlag, Heidleberg

    Google Scholar 

  • Bulmer JN, Innes BA, Levey J, Robson SC, Lash GE (2012) The role of vascular smooth muscle cell apoptosis and migration during uterine spiral artery remodeling in normal human pregnancy. FASEB J 26:2975–2985

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ (1987) The fine structure of the human placenta as revealed by scanning electron microscopy. Scanning Microsc 1:1811–1828

    CAS  PubMed  Google Scholar 

  • Burton GJ (2018) The John Hughes memorial lecture: stimulation of early placental development through a trophoblast-endometrial dialogue. J Equine Vet 66:14–18

    Article  Google Scholar 

  • Burton GJ, Jauniaux E (1995) Sonographic, stereological and Doppler flow velocimetric assessments of placental maturity. Br J Obstet Gynaecol 102:818–825

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ, Jauniaux E (2017) The cytotrophoblastic shell and complications of pregnancy. Placenta 60:134–139

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ, Jauniaux E (2018) Pathophysiology of placental-derived fetal growth restriction. Am J Obstet Gynecol 218:S745–S761

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ, Jones CJ (2009) Syncytial knots, sprouts, apoptosis, and trophoblast deportation from the human placenta. Taiwan J Obstet Gynecol 48:28–37

    Article  PubMed  Google Scholar 

  • Burton GJ, Jauniaux E, Watson AL (1999) Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy; the Boyd collection revisited. Am J Obstet Gynecol 181:718–724

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E (2002) Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab 87:2954–2959

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ, Woods AW, Jauniaux E, Kingdom JC (2009) Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30:473–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton GJ, Jauniaux E, Charnock-Jones DS (2010) The influence of the intrauterine environment on human placental development. Int J Dev Biol 54:303–312

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ, Jauniaux E, Murray AJ (2017) Oxygen and placental development; parallels and differences with tumour biology. Placenta 56:14–18

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ, Redman CW, Roberts JM, Moffett A (2019) Pre-eclampsia: pathophysiology and clinical implications. BMJ 366:l2381

    Article  PubMed  Google Scholar 

  • Burton GJ, Cindrova-Davies T, Turco MY (2020) Review: histotrophic nutrition and the placental-endometrial dialogue during human early pregnancy. Placenta 102:21–26

    Google Scholar 

  • Calvert SJ, Longtine MS, Cotter S, Jones CJ, Sibley CP, Aplin JD, Nelson DM, Heazell AE (2016) Studies of the dynamics of nuclear clustering in human syncytiotrophoblast. Reproduction 151:657–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caniggia I, Mostachfi H, Winter J, Gassmann M, Lye SJ, Kuliszewski M, Post M (2000) Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J Clin Invest 105:577–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter AM (2012) Evolution of placental function in mammals: the molecular basis of gas and nutrient transfer, hormone secretion, and immune responses. Physiol Rev 92:1543–1576

    Article  CAS  PubMed  Google Scholar 

  • Carter AM, Mess A (2007) Evolution of the placenta in eutherian mammals. Placenta 28:259–262

    Article  CAS  PubMed  Google Scholar 

  • Carter AM, Pijnenborg R (2011) Evolution of invasive placentation with special reference to non-human primates. Best Pract Res Clin Obstet Gynaecol 25:249–257

    Article  PubMed  Google Scholar 

  • Castellucci M, Zaccheo D, Pescetto G (1980) A three-dimensional study of the normal human placental villous core. I. The Hofbauer cells. Cell Tissue Res 210:235–247

    Article  CAS  PubMed  Google Scholar 

  • Cha J, Sun X, Dey SK (2012) Mechanisms of implantation: strategies for successful pregnancy. Nat Med 18:1754–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang WL, Liu YW, Dang YL, Jiang XX, Xu H, Huang X, Wang YL, Wang H, Zhu C, Xue LQ, Lin HY, Meng W, Wang H (2018) PLAC8, a new marker for human interstitial extravillous trophoblast cells, promotes their invasion and migration. Development 145:dev148932

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuprin A, Gal H, Biron-Shental T, Biran A, Amiel A, Rozenblatt S, Krizhanovsky V (2013) Cell fusion induced by ERVWE1 or measles virus causes cellular senescence. Genes Dev 27:2356–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cindrova-Davies T, Yung HW, Johns J, Spasic-Boskovic O, Korolchuk S, Jauniaux E, Burton GJ, Charnock-Jones DS (2007) Oxidative stress, gene expression, and protein changes induced in the human placenta during labor. Am J Pathol 171:1168–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cindrova-Davies T, Van Patot MT, Gardner L, Jauniaux E, Burton GJ, Charnock-Jones DS (2015) Energy status and HIF signalling in chorionic villi show no evidence of hypoxic stress during human early placental development. Mol Hum Reprod 21:296–308

    Article  CAS  PubMed  Google Scholar 

  • Cindrova-Davies T, Jauniaux E, Elliot MG, Gong S, Burton GJ, Charnock-Jones DS (2017) RNA-seq reveals conservation of function among the yolk sacs of human, mouse, and chicken. Proc Natl Acad Sci U S A 114:E4753–E4761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cindrova-Davies T, Fogarty NME, Jones CJP, Kingdom J, Burton GJ (2018) Evidence of oxidative stress-induced senescence in mature, post-mature and pathological human placentas. Placenta 68:15–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark AR, James JL, Stevenson GN, Collins SL (2018) Understanding abnormal uterine artery Doppler waveforms: a novel computational model to explore potential causes within the utero-placental vasculature. Placenta 66:74–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole LA (2007) Hyperglycosylated hCG. Placenta 28:977–986

    Article  CAS  PubMed  Google Scholar 

  • Cole LA (2010) Hyperglycosylated hCG, a review. Placenta 31:653–664

    Article  CAS  PubMed  Google Scholar 

  • Coleman SJ, Gerza L, Jones CJ, Sibley CP, Aplin JD, Heazell AE (2013) Syncytial nuclear aggregates in normal placenta show increased nuclear condensation, but apoptosis and cytoskeletal redistribution are uncommon. Placenta 34:449–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins SL, Birks JS, Stevenson GN, Papageorghiou AT, Noble JA, Impey L (2012) Measurement of spiral artery jets: general principles and differences observed in small-for-gestational-age pregnancies. Ultrasound Obstet Gynecol 40:171–178

    Article  CAS  PubMed  Google Scholar 

  • Conrad KP, Rabaglino MB, Post Uiterweer ED (2017) Emerging role for dysregulated decidualization in the genesis of preeclampsia. Placenta 60:119–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox LS, Redman C (2017) The role of cellular senescence in ageing of the placenta. Placenta 52:139–145

    Article  CAS  PubMed  Google Scholar 

  • Dasilva-Arnold SC, Kuo CY, Davra V, Remache Y, Kim PCW, Fisher JP, Zamudio S, Al-khan A, Birge RB, Illsley NP (2019) ZEB2, a master regulator of the epithelial-mesenchymal transition, mediates trophoblast differentiation. Mol Hum Reprod 25:61–75

    Article  CAS  PubMed  Google Scholar 

  • De Rijk EPCT, Van Esch E (2008) The macaque placenta—a mini-review. Toxicol Pathol 36:108S–111S

    Article  Google Scholar 

  • Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH (2016) Self-organization of the in vitro attached human embryo. Nature 533:251–254

    Article  CAS  PubMed  Google Scholar 

  • Demir R, Kaufmann P, Castellucci M, Erbengi T, Kotowski A (1989) Fetal vasculogenesis and angiogenesis in human placental villi. Acta Anat 136:190–203

    Article  CAS  PubMed  Google Scholar 

  • Demir R, Kayisli UA, Celik-Ozenci C, Korgun ET, Demir-Weusten AY, Arici A (2002) Structural differentiation of human uterine luminal and glandular epithelium during early pregnancy: an ultrastructural and immunohistochemical study. Placenta 23:672–684

    Article  CAS  PubMed  Google Scholar 

  • Dempsey EW (1972) The development of capillaries in the villi of early human placentas. Am J Anat 134:221–238

    Article  CAS  PubMed  Google Scholar 

  • Ellery PM, Cindrova-Davies T, Jauniaux E, Ferguson-Smith AC, Burton GJ (2009) Evidence for transcriptional activity in the syncytiotrophoblast of the human placenta. Placenta 30:329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliot MG, Crespi BJ (2009) Phylogenetic evidence for early hemochorial placentation in eutheria. Placenta 30:949–967

    Article  CAS  PubMed  Google Scholar 

  • Elliot MG, Crespi BJ (2015) Genetic recapitulation of human pre-eclampsia risk during convergent evolution of reduced placental invasiveness in eutherian mammals. Philos Trans R Soc Lond B Biol Sci 370:20140069

    Article  PubMed  PubMed Central  Google Scholar 

  • Enders AC (1989) Trophoblast differentiation during the transition from trophoblastic plate to lacunar stage of implantation in the rhesus monkey and human. Am J Anat 186:85–98

    Article  CAS  PubMed  Google Scholar 

  • Enders AC (2001) Perspectives on human implantation. Infertil Reprod Med Clin N Am 12:251–269

    Google Scholar 

  • Enders AC (2007) Implantation in the macaque: expansion of the implantation site during the first week of implantation. Placenta 28:794–802

    Article  CAS  PubMed  Google Scholar 

  • Enders AC, King BF (1988) Formation and differentiation of extraembryonic mesoderm in the rhesus monkey. Am J Anat 181:327–340

    Article  CAS  PubMed  Google Scholar 

  • Enders AC, Schlafke S, Hendrickx AG (1986) Differentiation of the embryonic disc, amnion, and yolk sac in the rhesus monkey. Am J Anat 177:161–185

    Article  CAS  PubMed  Google Scholar 

  • Enders AC, Blankenship TN, Fazleabas AT, Jones CJ (2001) Structure of anchoring villi and the trophoblastic shell in the human, baboon and macaque placenta. Placenta 22:284–303

    Article  CAS  PubMed  Google Scholar 

  • Evans J (2016) Hyperglycosylated hCG: a unique human implantation and invasion factor. Am J Reprod Immunol 75:333–340

    Article  CAS  PubMed  Google Scholar 

  • Filant J, Spencer TE (2014) Uterine glands: biological roles in conceptus implantation, uterine receptivity and decidualization. Int J Dev Biol 58:107–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogarty NME, Mayhew TM, Ferguson-Smith AC, Burton GJ (2011) A quantitative analysis of transcriptionally active syncytiotrophoblastic nuclei across human gestation. J Anat 219:601–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogarty NM, Ferguson-Smith AC, Burton GJ (2013) Syncytial knots (Tenney-Parker changes) in the human placenta: evidence of loss of transcriptional activity and oxidative damage. Am J Pathol 183:144–152

    Article  PubMed  Google Scholar 

  • Fogarty NM, Burton GJ, Ferguson-Smith AC (2015) Different epigenetic states define syncytiotrophoblast and cytotrophoblast nuclei in the trophoblast of the human placenta. Placenta 36:796–802

    Article  CAS  PubMed  Google Scholar 

  • Freyer C, Renfree MB (2009) The mammalian yolk sac placenta. J Exp Zool B Mol Dev Evol 312:545–554

    Article  PubMed  Google Scholar 

  • Gellersen B, Reimann K, Samalecos A, Aupers S, Bamberger AM (2010) Invasiveness of human endometrial stromal cells is promoted by decidualization and by trophoblast-derived signals. Hum Reprod 25:862–873

    Article  CAS  PubMed  Google Scholar 

  • Genbacev O, Joslin R, Damsky CH, Polliotti BM, Fisher SJ (1996) Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J Clin Investig 97:540–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein J, Braverman M, Salafia C, Buckley P (1988) The phenotype of human placental macrophages and its variation with gestational age. Am J Pathol 133:648–659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Crussi F, Roth LM (1976) The human yolk sac and yolk sac carcinoma. An ultrastructural study. Hum Pathol 7:675–691

    Article  CAS  PubMed  Google Scholar 

  • Gorr TA (2017) Hypometabolism as the ultimate defence in stress response: how the comparative approach helps understanding of medically relevant questions. Acta Physiol (Oxf) 219:409–440

    Article  CAS  Google Scholar 

  • Guibourdenche J, Handschuh K, Tsatsaris V, Gerbaud P, Leguy MC, Muller F, Brion DE Fournier T (2010) Hyperglycosylated hCG is a marker of early human trophoblast invasion. J Clin Endocrinol Metab 95:E240–E244

    Article  CAS  PubMed  Google Scholar 

  • Haider S, Meinhardt G, Saleh L, Fiala C, Pollheimer J, Knofler M (2016) Notch1 controls development of the extravillous trophoblast lineage in the human placenta. Proc Natl Acad Sci U S A 113:E7710–E7719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton WJ, Boyd JD (1960) Development of the human placenta in the first three months of gestation. J Anat 94:297–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna CW, Demond H, Kelsey G (2018) Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 24:556–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris LK (2010) Review: trophoblast-vascular cell interactions in early pregnancy: how to remodel a vessel. Placenta 31(Suppl):S93–S98

    Article  PubMed  Google Scholar 

  • Harris JWS, Ramsey EM (1966) The morphology of human uteroplacental vasculature. Contrib Embryol 38:43–58

    Google Scholar 

  • Hemberger M, Udayashankar R, Tesar P, Moore H, Burton GJ (2010) ELF5-enforced transcriptonal networks define an epigentically regulated trophoblast stem cell compartment in the human placenta. Mol Hum Genet 19:2456–2467

    Article  CAS  Google Scholar 

  • Hemberger M, Hanna CW, Dean W (2020) Mechanisms of early placental development in mouse and humans. Nat Rev Genet 21:27–43

    Article  CAS  PubMed  Google Scholar 

  • Hempstock J, Bao Y-P, Bar-Issac M, Segaren N, Watson AL, Charnock Jones DS, Jauniaux E, Burton GJ (2003a) Intralobular differences in antioxidant enzyme expression and activity reflect oxygen gradients within the human placenta. Placenta 24:517–523

    Article  CAS  PubMed  Google Scholar 

  • Hempstock J, Jauniaux E, Greenwold N, Burton GJ (2003b) The contribution of placental oxidative stress to early pregnancy failure. Hum Pathol 34:1265–1275

    Article  CAS  PubMed  Google Scholar 

  • Hempstock J, Cindrova-Davies T, Jauniaux E, Burton GJ (2004) Endometrial glands as a source of nutrients, growth factors and cytokines during the first trimester of human pregnancy; a morphological and immunohistochemical study. Reprod Biol Endocrinol 2:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Hertig AT, Rock J (1941) Two human ova of the pre-villous stage, having an ovulation age of about eleven and twelve days respectively. Contrib Embryol 29:127–156

    Google Scholar 

  • Hertig AT, Rock J, Adams EC (1956) A description of 34 human ova within the first 17 days of development. Am J Anat 98:435–494

    Article  CAS  PubMed  Google Scholar 

  • Hiby SE, Apps R, Sharkey AM, Farrell LE, Gardner L, Mulder A, Claas FH, Walker JJ, Redman CC, Morgan L, Tower C, Regan L, Moore GE, Carrington M, Moffett A (2010) Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest 120:4102–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houston ML (1969) The development of the baboon (Papio sp.) placenta during the fetal period of gestation. Am J Anat 126:17–29

    Article  CAS  PubMed  Google Scholar 

  • Hung TH, Burton GJ (2006) Hypoxia and reoxygenation: a possible mechanism for placental oxidative stress in preeclampsia. Taiwan J Obstet Gynecol 45:189–200

    Article  PubMed  Google Scholar 

  • Huppertz B, Kaufmann P (1999) The apoptosis cascade in human villous trophoblast. Trophoblast Res 13:215–242

    CAS  Google Scholar 

  • Huppertz B, Frank H-G, Reister F, Kingdom J, Korr H, Kaufmann P (1999) Apoptosis cascade progresses during turnover of human trophoblast: analysis of villous cytotrophoblast and syncytial fragments in vitro. Lab Invest 79:1687–1702

    CAS  PubMed  Google Scholar 

  • Hustin J, Schaaps JP, Lambotte R (1988) Anatomical studies of the utero-placental vascularisation in the first trimester of pregnancy. Trophoblast Res 3:49–60

    Google Scholar 

  • Hustin J, Jauniaux E, Schaaps JP (1990) Histological study of the materno-embryonic interface in spontaneous abortion. Placenta 11:477–486

    Article  CAS  PubMed  Google Scholar 

  • Hutter J, Harteveld AA, Jackson LH, Franklin S, Bos C, Van Osch MJP, O'Muircheartaigh J, Ho A, Chappell L, Hajnal JV, Rutherford M, De Vita E (2020) Perfusion and apparent oxygenation in the human placenta (PERFOX). Magn Reson Med 83:549–560

    Article  PubMed  Google Scholar 

  • Jackson MR, Mayhew TM, Boyd PA (1992) Quantitative description of the elaboration and maturation of villi from 10 weeks of gestation to term. Placenta 13:357–370

    Article  CAS  PubMed  Google Scholar 

  • Jauniaux E, Gulbis B (2000) Fluid compartments of the embryonic environment. Hum Reprod Update 6:268–278

    Article  CAS  PubMed  Google Scholar 

  • Jauniaux E, Watson AL, Hempstock J, Bao Y-P, Skepper JN, Burton GJ (2000) Onset of maternal arterial bloodflow and placental oxidative stress; a possible factor in human early pregnancy failure. Am J Pathol 157:2111–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jauniaux E, Watson AL, Burton GJ (2001) Evaluation of respiratory gases and acid-base gradients in fetal fluids and uteroplacental tissue between 7 and 16 weeks. Am J Obstet Gynecol 184:998–1003

    Article  CAS  PubMed  Google Scholar 

  • Jauniaux E, Gulbis B, Burton GJ (2003a) The human first trimester gestational sac limits rather than facilitates oxygen transfer to the fetus-a review. Placenta 24(Suppl. A):S86–S93

    Article  PubMed  Google Scholar 

  • Jauniaux E, Hempstock J, Greenwold N, Burton GJ (2003b) Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am J Pathol 162:115–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Jauniaux E, Cindrova-Davies T, Johns J, Dunster C, Hempstock J, Kelly FJ, Burton GJ (2004) Distribution and transfer pathways of antioxidant molecules inside the first trimester human gestational sac. J Clin Endocrinol Metab 89:1452–1459

    Article  CAS  PubMed  Google Scholar 

  • Jauniaux E, Hempstock J, Teng C, Battaglia F, Burton GJ (2005) Polyol concentrations in the fluid compartments of the human conceptus during the first trimester of pregnancy; maintenance of redox potential in a low oxygen environment. J Clin Endocrinol Metab 90:1171–1175

    Article  CAS  PubMed  Google Scholar 

  • Jirkovska M, Kubinova L, Janacek J, Moravcova M, Krejci V, Karen P (2002) Topological properties and spatial organization of villous capillaries in normal and diabetic placentas. J Vasc Res 39:268–278

    Article  PubMed  Google Scholar 

  • Johns J, Jauniaux E, Burton GJ (2006) Factors affecting the early embryonic environment. Rev Gynaecol Perinat Pract 6:199–210

    Google Scholar 

  • Jones CJP, Jauniaux E (1995) Ultrastructure of the materno-embryonic interface in the first trimester of pregnancy. Micron 26:145–173

    Article  CAS  PubMed  Google Scholar 

  • Jones CJ, Choudhury RH, Aplin JD (2015) Tracking nutrient transfer at the human maternofetal interface from 4 weeks to term. Placenta 36:372–380

    Article  CAS  PubMed  Google Scholar 

  • Khong TY, Mooney EE, Ariel I, Balmus NC, Boyd TK, Brundler MA, Derricott H, Evans MJ, Faye-Petersen OM, Gillan JE, Heazell AE, Heller DS, Jacques SM, Keating S, Kelehan P, Maes A, Mckay EM, Morgan TK, Nikkels PG, Parks WT, Redline RW, Scheimberg I, Schoots MH, Sebire NJ, Timmer A, Turowski G, Van Der Voorn JP, Van Lijnschoten I, Gordijn SJ (2016) Sampling and definitions of placental lesions: Amsterdam placental workshop group consensus statement. Arch Pathol Lab Med 140:698–713

    Article  PubMed  Google Scholar 

  • Kingdom JC, Audette MC, Hobson SR, Windrim RC, Morgen E (2018) A placenta clinic approach to the diagnosis and management of fetal growth restriction. Am J Obstet Gynecol 218:S803–S817

    Article  PubMed  Google Scholar 

  • Knoth M, Larsen JF (1972) Ultrastructure of a human implantation site. Acta Obstet Gynecol Scand 51:385–393

    Article  CAS  PubMed  Google Scholar 

  • Lee CL, Lam KK, Koistinen H, Seppala M, Kurpisz M, Fernandez N, Pang RT, Yeung WS, Chiu PC (2011) Glycodelin-A as a paracrine regulator in early pregnancy. J Reprod Immunol 90:29–34

    Article  CAS  PubMed  Google Scholar 

  • Lee CQE, Gardner L, Turco M, Zhao N, Murray MJ, Coleman N, Rossant J, Hemberger M, Moffett A (2016) What is trophoblast? A combination of criteria define human first-trimester trophoblast. Stem Cell Rep 6:257–272

    Article  CAS  Google Scholar 

  • Lee CQE, Turco MY, Gardner L, Simons BD, Hemberger M, Moffett A (2018) Integrin alpha2 marks a niche of trophoblast progenitor cells in first trimester human placenta. Development 145:dev162305

    Article  PubMed  PubMed Central  Google Scholar 

  • Lees JG, Gardner DK, Harvey AJ (2017) Pluripotent stem cell metabolism and mitochondria: beyond ATP. Stem Cells Int 2017:2874283

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindenberg S, Hyttel P, Sjøgren A, Greve T (1989) A comparative study of attachment of human, bovine and mouse blastocysts to uterine epithelial monolayer. Hum Reprod 4:446–456

    Article  CAS  PubMed  Google Scholar 

  • Longtine MS, Barton A, Chen B, Nelson DM (2012a) Live-cell imaging shows apoptosis initiates locally and propagates as a wave throughout syncytiotrophoblasts in primary cultures of human placental villous trophoblasts. Placenta 33:971–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longtine MS, Chen B, Odibo AO, Zhong Y, Nelson DM (2012b) Caspase-mediated apoptosis of trophoblasts in term human placental villi is restricted to cytotrophoblasts and absent from the multinucleated syncytiotrophoblast. Reproduction 143:107–121

    Article  CAS  PubMed  Google Scholar 

  • Luckett WP (1978) Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am J Anat 152:59–97

    Article  CAS  PubMed  Google Scholar 

  • Maiti K, Sultana Z, Aitken RJ, Morris J, Park F, Andrew B, Riley SC, Smith R (2017) Evidence that fetal death is associated with placental aging. Am J Obstet Gynecol 217:441 e1–441 e14

    Article  Google Scholar 

  • Martin RD (2008) Evolution of placentation: implications of mammalian phylogeny. Evol Biol 35:125–145

    Article  Google Scholar 

  • Martin BJ, Spicer SS (1973) Ultrastructural features of cellular maturation and aging in human trophoblast. J Ultrastruct Res 43:133–149

    Article  CAS  PubMed  Google Scholar 

  • Martinoli C, Castellucci M, Zaccheo D, Kaufmann P (1984) Scanning electron microscopy of stromal cells of human placental villi throughout pregnancy. Cell Tissue Res 235:647–655

    Article  CAS  PubMed  Google Scholar 

  • Maruo T, Matsuo H, Murata K, Mochizuki M (1992) Gestational age-dependent dual action of epidermal growth factor on human placenta early in gestation. J Clin Endocrinol Metab 75:1362–1367

    CAS  PubMed  Google Scholar 

  • Mayhew TM, Jackson MR, Boyd PA (1993) Changes in oxygen diffusive conductances of human placental during gestation (10-41 weeks) are commensurate with the gain in fetal weight. Placenta 14:51–61

    Article  CAS  PubMed  Google Scholar 

  • Moffett A, Colucci F (2015) Co-evolution of NK receptors and HLA ligands in humans is driven by reproduction. Immunol Rev 267:283–297

    Article  CAS  PubMed  Google Scholar 

  • Moffett A, Hiby SE, Sharkey AM (2015) The role of the maternal immune system in the regulation of human birthweight. Philos Trans R Soc Lond B Biol Sci 370:20140071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser G, Weiss G, Gauster M, Sundl M, Huppertz B (2015) Evidence from the very beginning: endoglandular trophoblasts penetrate and replace uterine glands in situ and in vitro. Hum Reprod 30:2747–2757

    Article  CAS  PubMed  Google Scholar 

  • Mossman HW (1987) Vertebrate fetal membranes: comparative ontogeny and morphology; evolution; phylogenetic significance; basic functions; research opportunities. Macmillan, London

    Book  Google Scholar 

  • Nakamura T, Okamoto I, Sasaki K, Yabuta Y, Iwatani C, Tsuchiya H, Seita Y, Nakamura S, Yamamoto T, Saitou M (2016) A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537:57–62

    Article  CAS  PubMed  Google Scholar 

  • Niakan KK, Eggan K (2013) Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol 375:54–64

    Article  CAS  PubMed  Google Scholar 

  • Nogales FF, Beltran E, Gonzalez F (1993) Morphological changes of the secondary human yolk sac in early pregnancy wastage. In: NOGALES FF (ed) The human yolk sac and yolk sac tumours. Springer-Verlag, Berlin

    Chapter  Google Scholar 

  • Ockleford CD (2010) The Allo-epi-endothelial lining of the intervillous space. Placenta 31:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Parham P, Moffett A (2013) Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat Rev Immunol 13:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereda J, Niimi G (2008) Embryonic erythropoiesis in human yolk sac: two different compartments for two different processes. Microsc Res Tech 71:856–862

    Article  PubMed  Google Scholar 

  • Petropoulos S, Edsgard D, Reinius B, Deng Q, Panula SP, Codeluppi S, Reyes AP, Linnarsson S, Sandberg R, Lanner F (2016) Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 167:285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pijnenborg R, D'Hooghe T, Vercruysse L, Bambra C (1996) Evaluation of trophoblast invasion in placental bed biopsies of the baboon, with immunohistochemical localisation of cytokeratin, fibronectin, and laminin. J Med Primatol 25:272–281

    Article  CAS  PubMed  Google Scholar 

  • Pijnenborg R, Vercruysse L, Hanssens M (2006) The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 27:939–958

    Article  CAS  PubMed  Google Scholar 

  • Pijnenborg R, Vercruysse L, Carter AM (2011a) Deep trophoblast invasion and spiral artery remodelling in the placental bed of the chimpanzee. Placenta 32:400–408

    Article  CAS  PubMed  Google Scholar 

  • Pijnenborg R, Vercruysse L, Carter AM (2011b) Deep trophoblast invasion and spiral artery remodelling in the placental bed of the lowland gorilla. Placenta 32:586–591

    Article  CAS  PubMed  Google Scholar 

  • Plitman Mayo R, Charnock-Jones DS, Burton GJ, Oyen ML (2016a) Three-dimensional modeling of human placental terminal villi. Placenta 43:54–60

    Article  PubMed  Google Scholar 

  • Plitman Mayo R, Olsthoorn J, Charnock-Jones DS, Burton GJ, Oyen ML (2016b) Computational modeling of the structure-function relationship in human placental terminal villi. J Biomech 49:3780–3787

    Article  CAS  PubMed  Google Scholar 

  • Plitman Mayo R, Abbas Y, Charnock-Jones DS, Burton GJ, Marom G (2019) Three-dimensional morphological analysis of placental terminal villi. Interface Focus 9:20190037

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knofler M (2018) Regulation of placental Extravillous trophoblasts by the maternal uterine environment. Front Immunol 9:2597

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramsey EM, Donner MW (1980) Placental vasculature and circulation. In: Anatomy, physiology, radiology, clinical aspects, atlas and textbook. Georg Thieme, Stuttgart

    Google Scholar 

  • Reyes L, Wolfe B, Golos T (2017) Hofbauer cells: placental macrophages of fetal origin. Results Probl Cell Differ 62:45–60

    Article  CAS  PubMed  Google Scholar 

  • Roberts VHJ, Morgan TK, Bednarek P, Morita M, Burton GJ, Lo JO, Frias AE (2017) Early first trimester uteroplacental flow and the progressive disintegration of spiral artery plugs: new insights from contrast-enhanced ultrasound and tissue histopathology. Hum Reprod 32:2382–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robin C, Bollerot K, Mendes S, Haak E, Crisan M, Cerisoli F, Lauw I, Kaimakis P, Jorna R, Vermeulen M, Kayser M, Van Der Linden R, Imanirad P, Verstegen M, Nawaz-Yousaf H, Papazian N, Steegers E, Cupedo T, Dzierzak E (2009) Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell 5:385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosso P (1976) Placenta as an aging organ. Curr Concepts Nutr 4:23–41

    CAS  PubMed  Google Scholar 

  • Saghian R, Bogle G, James JL, Clark AR (2019) Establishment of maternal blood supply to the placenta: insights into plugging, unplugging and trophoblast behaviour from an agent-based model. Interface Focus 9:20190019

    Article  PubMed  PubMed Central  Google Scholar 

  • Salafia CM, Yampolsky M, Shlakhter A, Mandel DH, Schwartz N (2012) Variety in placental shape: when does it originate? Placenta 33:164–170

    Article  CAS  PubMed  Google Scholar 

  • Schiessl B, Innes BA, Bulmer JN, Otun HA, Chadwick TJ, Robson SC, Lash GE (2009) Localization of angiogenic growth factors and their receptors in the human placental bed throughout normal human pregnancy. Placenta 30:79–87

    Article  CAS  PubMed  Google Scholar 

  • Schwartz N, Mandel D, Shlakhter O, Coletta J, Pessel C, Timor-Tritsch IE, Salafia CM (2011) Placental morphologic features and chorionic surface vasculature at term are highly correlated with 3-dimensional sonographic measurements at 11 to 14 weeks. J Ultrasound Med 30:1171–1178

    Article  PubMed  Google Scholar 

  • Seppälä M, Jukunen M, Riitinen L, Koistinen R (1992) Endometrial proteins: a reappraisal. Hum Reprod 7(Suppl. 1):31–38

    Article  PubMed  Google Scholar 

  • Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, Fogarty NM, Campbell A, Devito LG, Ilic D, Khalaf Y, Niakan KK, Fishel S, Zernicka-Goetz M (2016) Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol 18:700–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson RA, Mayhew TM, Barnes PR (1992) From 13 weeks to term, the trophoblast of human placenta grows by the continuous recruitment of new proliferative units: a study of nuclear number using the disector. Placenta 13:501–512

    Article  CAS  PubMed  Google Scholar 

  • Soncin F, Khater M, To C, Pizzo D, Farah O, Wakeland A, Arul Nambi Rajan K, Nelson KK, Chang CW, Moretto-Zita M, Natale DR, Laurent LC, Parast MM (2018) Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development. Development 145:dev156273

    Article  PubMed  PubMed Central  Google Scholar 

  • Teh WT, McBain J, Rogers P (2016) What is the contribution of embryo-endometrial asynchrony to implantation failure? J Assist Reprod Genet 33:1419–1430

    Article  PubMed  PubMed Central  Google Scholar 

  • Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, Hollinshead M, Marsh SGE, Brosens JJ, Critchley HO, Simons BD, Hemberger M, Koo BK, Moffett A, Burton GJ (2017) Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol 19:568–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velicky P, Meinhardt G, Plessl K, Vondra S, Weiss T, Haslinger P, Lendl T, Aumayr K, Mairhofer M, Zhu X, Schutz B, Hannibal RL, Lindau R, Weil B, Ernerudh J, Neesen J, Egger G, Mikula M, Rohrl C, Urban AE, Baker J, Knofler M, Pollheimer J (2018) Genome amplification and cellular senescence are hallmarks of human placenta development. PLoS Genet 14:e1007698

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitley GS, Cartwright JE (2010) Cellular and molecular regulation of spiral artery remodelling: lessons from the cardiovascular field. Placenta 31:465–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wildman DE, Chen C, Erez O, Grossman LI, Goodman M, Romero R (2006) Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc Natl Acad Sci U S A 103:3203–3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong FTM, Lin C, Cox BJ (2019) Cellular systems biology identifies dynamic trophoblast populations in early human placentas. Placenta 76:10–18

    Article  CAS  PubMed  Google Scholar 

  • Wooding FP, Burton GJ (2008) Comparative placentation. Structures, functions and evolution. Springer, Berlin

    Book  Google Scholar 

  • Woollett LA (2008) Where does fetal and embryonic cholesterol originate and what does it do? Annu Rev Nutr 28:97–114

    Article  CAS  PubMed  Google Scholar 

  • Zybina TG, Kaufmann P, Frank HG, Freed J, Kadyrov M, Biesterfeld S (2002) Genome multiplication of extravillous trophoblast cells in human placenta in the course of differentiation and invasion into endometrium and myometrium. I. Dynamics of polyploidization. Tsitologiia 44:1058–1067

    CAS  PubMed  Google Scholar 

  • Zybina TG, Frank HG, Biesterfeld S, Kaufmann P (2004) Genome multiplication of extravillous trophoblast cells in human placenta in the course of differentiation and invasion into endometrium and myometrium. II. Mechanisms of polyploidization. Tsitologiia 46:640–648

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contributions of their many colleagues to the ideas and evidence presented here. They are pleased to acknowledge the generosity of Professor Allen C Enders in making his photomicrographs of the Carnegie Collection freely available. They can be accessed at www.trophoblast.cam.ac.uk/Resources/enders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham J. Burton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burton, G.J., Jauniaux, E. (2021). Placentation in the Human and Higher Primates. In: Geisert, R.D., Spencer, T. (eds) Placentation in Mammals. Advances in Anatomy, Embryology and Cell Biology, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-030-77360-1_11

Download citation

Publish with us

Policies and ethics