Skip to main content

Development of the Mouse Placenta

  • Chapter
  • First Online:
Placentation in Mammals

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 234))

Abstract

Placenta forms as a momentary organ inside the uterus with a slew of activities only when the woman is pregnant. It is a discoid-shaped hybrid structure consisting of maternal and embryonic components. It develops in the mesometrial side of the uterus following blastocyst implantation to keep the two genetically different entities, the mother and embryo, separated but connected. The beginning and progression of placental formation and development following blastocyst implantation coincides with the chronological developmental stages of the embryo. It gradually acquires the ability to perform the vascular, respiratory, hepatic, renal, endocrine, gastrointestinal, immune, and physical barrier functions synchronously that are vital for fetal development, growth, and safety inside the maternal environment. The uterus ejects the placenta when its embryonic growth and survival supportive roles are finished; that is usually the birth of the baby. Despite its irreplaceable role in fetal development and survival over the post-implantation progression of pregnancy, it still remains unclear how it forms, matures, performs all of its activities, and starts to fail functioning. Thus, a detailed understanding about normal developmental, structural, and functional aspects of the placenta may lead to avoid pregnancy problems that arise with the placenta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Al:

Allantois

Am:

Amnion

AM:

Antimesometrial side

Amc:

Amniotic cavity

AVE:

Anterior visceral endoderm

BC:

Blastocoel

Bl:

Blastocyst

Ch:

Chorion

ChC:

Chorionic cavity

CM:

Circular muscle

cTGCs:

Canal-associated trophoblast giant cells

DC:

Decidua

DVE:

Distal visceral endoderm

EC:

Endothelial cell

ECC:

Exocoelomic cavity

EEE:

Extra-embryonic ectoderm

EEEn:

Extra-embryonic endoderm

Em:

Embryo

EP:

Epiblast

EPC:

Ectoplacental cone

EpcC:

Ectoplacental cavity

ExEM:

Extra-embryonic mesoderm

GlyT:

Glycogen trophoblast

ICM:

Inner cell mass

IGF-II:

Insulin-like growth factor II

JZ:

Junctional zone

LE:

Luminal epithelium

LM:

Longitudinal muscle

M:

Mesometrial side

MBS:

Maternal blood sinusoid

PaE:

Parietal endoderm

PDZ:

Primary decidual zone

PE:

Primitive endoderm

Pro-AmC:

Pro-amniotic cavity

PS:

Primitive streak

p-TGCs:

Parietal giant cells

SDZ:

Secondary decidual zone

SpA-TGC:

Spiral artery-associated trophoblast giant cells

SpT:

Spongiotrophoblast

S-TGCs:

Sinusoidal trophoblast giant cells

SynT-I:

Syncytotrophoblast I

SynT-II:

Syncytotrophoblast II

TGCs:

Trophoblast giant cells

Tr:

Trophectoderm

ViE:

Visceral endoderm

ZP:

Zona pellucida

References

  • Abe KI, Funaya S, Tsukioka D, Kawamura M, Suzuki Y, Suzuki MG, Schultz RM, Aoki F (2018) Minor zygotic gene activation is essential for mouse preimplantation development. Proc Natl Acad Sci U S A 115(29):E6780–E6788. Available from: PM:29967139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora R, Papaioannou VE (2012) The murine allantois: a model system for the study of blood vessel formation. Blood 120(13):2562–2572. Available from: PM:22855605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo PN, Pelajo-Machado M (2018) Mechanism of hematopoiesis and vasculogenesis in mouse placenta. Placenta 69:140–145. Available from: PM:29680159

    Article  CAS  Google Scholar 

  • Bauer ST, Bonanno C (2009) Abnormal placentation. Semin Perinatol 33(2):88–96. Available from: PM:19324237

    Article  PubMed  Google Scholar 

  • Bevilacqua EM, Abrahamsohn PA (1988) Ultrastructure of trophoblast giant cell transformation during the invasive stage of implantation of the mouse embryo. J Morphol 198(3):341–351. Available from: PM:3221406

    Article  CAS  PubMed  Google Scholar 

  • Bevilacqua EM, Abrahamsohn PA (1989) Trophoblast invasion during implantation of the mouse embryo. Arch Biol Med Exp (Santiago) 22(2):107–118. Available from: PM:2619314

    CAS  Google Scholar 

  • Brown LD, Hay WW Jr (2016) Impact of placental insufficiency on fetal skeletal muscle growth. Mol Cell Endocrinol 435:69–77. Available from: PM:26994511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne JC (1963) Placental insufficiency. Scott Med J 8:459–465. Available from: PM:14089221

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ, Fowden AL, Thornburg KL (2016) Placental origins of chronic disease. Physiol Rev 96(4):1509–1565. Available from: PM:27604528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carson DD, Bagchi I, Dey SK, Enders AC, Fazleabas AT, Lessey BA, Yoshinaga K (2000) Embryo implantation. Dev Biol 223(2):217–237. Available from: PM:10882512

    Article  CAS  PubMed  Google Scholar 

  • Cha J, Sun X, Dey SK (2012) Mechanisms of implantation: strategies for successful pregnancy. Nat Med 18(12):1754–1767. Available from: PM:23223073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha J, Bartos A, Park C, Sun X, Li Y, Cha SW, Ajima R, Ho HY, Yamaguchi TP, Dey SK (2014) Appropriate crypt formation in the uterus for embryo homing and implantation requires Wnt5a-ROR signaling. Cell Rep 8(2):382–392. Available from: PM:25043182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chazaud C, Yamanaka Y (2016) Lineage specification in the mouse preimplantation embryo. Development 143(7):1063–1074. Available from: PM:27048685

    Article  CAS  PubMed  Google Scholar 

  • Coan PM, Ferguson-Smith AC, Burton GJ (2004) Developmental dynamics of the definitive mouse placenta assessed by stereology. Biol Reprod 70(6):1806–1813. Available from: PM:14973263

    Article  CAS  PubMed  Google Scholar 

  • Das SK (2009) Cell cycle regulatory control for uterine stromal cell decidualization in implantation. Reproduction 137(6):889–899. Available from: PM:19307426

    Article  CAS  PubMed  Google Scholar 

  • Das SK (2010) Regional development of uterine decidualization: molecular signaling by Hoxa-10. Mol Reprod Dev 77(5):387–396. Available from: PM:19921737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das SK, Wang XN, Paria BC, Damm D, Abraham JA, Klagsbrun M, Andrews GK, Dey SK (1994) Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development 120(5):1071–1083. Available from: PM:8026321

    Article  CAS  PubMed  Google Scholar 

  • Downs KM (1998) The murine allantois. Curr Top Dev Biol 39:1–33. Available from: PM:9475996

    Article  CAS  PubMed  Google Scholar 

  • Downs KM, Gardner RL (1995) An investigation into early placental ontogeny: allantoic attachment to the chorion is selective and developmentally regulated. Development 121(2):407–416. Available from: PM:7768182

    Article  CAS  PubMed  Google Scholar 

  • Freyer C, Renfree MB (2009) The mammalian yolk sac placenta. J Exp Zool B Mol Dev Evol 312(6):545–554. Available from: PM:18985616

    Article  PubMed  Google Scholar 

  • Garcia MD, Larina IV (2014) Vascular development and hemodynamic force in the mouse yolk sac. Front Physiol 5:308. Available from: PM:25191274

    PubMed  PubMed Central  Google Scholar 

  • Guo S, Cui X, Jiang X, Duo S, Li S, Gao F, Wang H (2020) Tracing the origin of the placental trophoblast cells in mouse embryo developmentdagger. Biol Reprod 102(3):598–606. Available from: PM:31621828

    Article  PubMed  Google Scholar 

  • Hafez S (2017) Comparative placental anatomy: divergent structures serving a common purpose. Prog Mol Biol Transl Sci 145:1–28. Available from: PM:28110748

    Article  CAS  PubMed  Google Scholar 

  • He B, Zhang H, Wang J, Liu M, Sun Y, Guo C, Lu J, Wang H, Kong S (2019) Blastocyst activation engenders transcriptome reprogram affecting X-chromosome reactivation and inflammatory trigger of implantation. Proc Natl Acad Sci U S A 116(33):16621–16630. Available from: PM:31346081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemberger M, Hanna CW, Dean W (2020) Mechanisms of early placental development in mouse and humans. Nat Rev Genet 21(1):27–43. Available from: PM:31534202

    Article  CAS  PubMed  Google Scholar 

  • Ikawa M, Inoue N, Benham AM, Okabe M (2010) Fertilization: a sperm’s journey to and interaction with the oocyte. J Clin Invest 120(4):984–994. Available from: PM:20364096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollmann M, Gaulhofer J, Lang U, Klaritsch P (2016) Placenta praevia: incidence, risk factors and outcome. J Matern Fetal Neonatal Med 29(9):1395–1398. Available from: PM:26043298

    Article  PubMed  Google Scholar 

  • Li Y, Sun X, Dey SK (2015) Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation. Cell Rep 11(3):358–365. Available from: PM:25865893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori M, Bogdan A, Balassa T, Csabai T, Szekeres-Bartho J (2016) The decidua-the maternal bed embracing the embryo-maintains the pregnancy. Semin Immunopathol 38(6):635–649. Available from: PM:27287066

    Article  PubMed  PubMed Central  Google Scholar 

  • Oyelese Y, Ananth CV (2006) Placental abruption. Obstet Gynecol 108(4):1005–1016. Available from: PM:17012465

    Article  PubMed  Google Scholar 

  • Oyelese Y, Smulian JC (2006) Placenta previa, placenta accreta, and vasa previa. Obstet Gynecol 107(4):927–941. Available from: PM:16582134

    Article  PubMed  Google Scholar 

  • Palis J, Koniski A (2005) Analysis of hematopoietic progenitors in the mouse embryo. Methods Mol Med 105:289–302. Available from: PM:15492402

    PubMed  Google Scholar 

  • Paria BC, Huet-Hudson YM, Dey SK (1993) Blastocyst’s state of activity determines the “window” of implantation in the receptive mouse uterus. Proc Natl Acad Sci U S A 90(21):10159–10162. Available from: PM:8234270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phipps EA, Thadhani R, Benzing T, Karumanchi SA (2019) Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol 15(5):275–289. Available from: PM:30792480

    Article  PubMed  PubMed Central  Google Scholar 

  • Posfai E, Rovic I, Jurisicova A (2019) The mammalian embryo’s first agenda: making trophectoderm. Int J Dev Biol 63(3-4-5):157–170. Available from: PM:31058294

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Perez JA, Hadjantonakis AK (2014) The dynamics of morphogenesis in the early mouse embryo. Cold Spring Harb Perspect Biol 7(11):a015867. Available from: PM:24968703

    Article  PubMed  Google Scholar 

  • Rivera-Perez JA, Mager J, Magnuson T (2003) Dynamic morphogenetic events characterize the mouse visceral endoderm. Dev Biol 261(2):470–487. Available from: PM:14499654

    Article  CAS  PubMed  Google Scholar 

  • Rossant J, Cross JC (2001) Placental development: lessons from mouse mutants. Nat Rev Genet 2(7):538–548. Available from: PM:11433360

    Article  CAS  PubMed  Google Scholar 

  • Rossant J, Tam PP (2009) Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136(5):701–713. Available from: PM:19201946

    Article  CAS  PubMed  Google Scholar 

  • Simmons DG, Cross JC (2005) Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev Biol 284(1):12–24. Available from: PM:15963972

    Article  CAS  PubMed  Google Scholar 

  • Simmons DG, Natale DR, Begay V, Hughes M, Leutz A, Cross JC (2008) Early patterning of the chorion leads to the trilaminar trophoblast cell structure in the placental labyrinth. Development 135(12):2083–2091. Available from: PM:18448564

    Article  CAS  PubMed  Google Scholar 

  • Simon C, Dominguez F, Valbuena D, Pellicer A (2003) The role of estrogen in uterine receptivity and blastocyst implantation. Trends Endocrinol Metab 14(5):197–199. Available from: PM:12826321

    Article  CAS  PubMed  Google Scholar 

  • Watson ED, Cross JC (2005) Development of structures and transport functions in the mouse placenta. Physiology (Bethesda) 20:180–193. Available from: PM:15888575

    CAS  Google Scholar 

  • Woods L, Perez-Garcia V, Hemberger M (2018) Regulation of placental development and its impact on fetal growth-new insights from mouse models. Front Endocrinol (Lausanne) 9:570. Available from: PM:30319550

    Article  Google Scholar 

  • Woollett LA (2011) Review: transport of maternal cholesterol to the fetal circulation. Placenta 32(Suppl 2):S218–S221. Available from: PM:21300403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamane T (2018) Mouse yolk sac hematopoiesis. Front Cell Dev Biol 6:80. Available from: PM:30079337

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshinaga K (2013) A sequence of events in the uterus prior to implantation in the mouse. J Assist Reprod Genet 30(8):1017–1022. Available from: PM:24052329

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Paria BC (2006) Importance of uterine cell death, renewal, and their hormonal regulation in hamsters that show progesterone-dependent implantation. Endocrinology 147(5):2215–2227. Available from: PM:16469810

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR (2013) Physiological and molecular determinants of embryo implantation. Mol Aspects Med 34(5):939–980. Available from: PM:23290997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

Research in the authors’ laboratory is supported by R01 HD094946 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development/National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhash C. Paria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panja, S., Paria, B.C. (2021). Development of the Mouse Placenta. In: Geisert, R.D., Spencer, T. (eds) Placentation in Mammals. Advances in Anatomy, Embryology and Cell Biology, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-030-77360-1_10

Download citation

Publish with us

Policies and ethics