Skip to main content

General Fractional Calculus with Nonsingular Kernels: New Prospective on Viscoelasticity

  • Chapter
  • First Online:
Methods of Mathematical Modelling and Computation for Complex Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 373))

Abstract

In the chapter, the general fractional derivatives in the different kernel functions, such as Mittag-Lefller, Wiman and Prabhakar functions are considered to model the viscoelastic behaviors in the real materials. We investigate the basic formulas of the fractional calculus (FC) in the kernels of the power, Mittag-Lefller, Wiman and Prabhakar functions. We discuss the applications for the general fractional calculus (GFC) in viscoelasticity. As the examples, the Maxwell and Voigt models with the general fractional derivatives (GFD) are considered to represent the complexity of the real materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)

    Google Scholar 

  2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Academic (2006)

    Google Scholar 

  3. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    Google Scholar 

  4. Liouville, J.: Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. J. de l’Ecole Polytechnique 13, 1–69 (1832)

    Google Scholar 

  5. Riemann, B.: Versuch einer allgemeinen Auffassung der Integration und Differentiation, 14 Janvier. Bernhard Riemann’s Gesammelte Mathematische Werke 1892, 353–362 (1847)

    Google Scholar 

  6. Sonine, N.: Sur la différentiation à indice quelconque.Matematicheskii Sbornik 6(1), 1–38 (1872)

    Google Scholar 

  7. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 13(5), 529–539 (1967)

    Google Scholar 

  8. Smit, W., De Vries, H.: Rheological models containing fractional derivatives. Rheol. Acta 9(4), 525–534 (1970)

    Google Scholar 

  9. Dzhrbashyan, M., Nersesyan, A.: Drobnye proizvodnye i zadacha cauchy dlya di_erencial.nykh uravneniy drobnogo poryadka. Izvestiya Akademii Nauk Armyanskoj SSR, ser. Matematika 3(1), 3–29 (1968)

    Google Scholar 

  10. Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Springer International Publishing, Switzerland (2015)

    Google Scholar 

  11. Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fractional Calculus Appl. Anal. 3(3), 231–248 (2000)

    Google Scholar 

  12. Richard, H.: Fractional Calculus: An Introduction for Physicists. World Scientific (2014)

    Google Scholar 

  13. Drapaca, C.S., Sivaloganathan, S.: A fractional model of continuum mechanics. J. Elast. 107(2), 105–123 (2012)

    Google Scholar 

  14. Blasiak, S.: Time-fractional heat transfer equations in modeling of the non-contacting face seals. Int. J. Heat Mass Transf. 100, 79–88 (2016)

    Google Scholar 

  15. Machado, J.T., Mata, M.E.: Pseudo phase plane and fractional calculus modeling of western global economic downturn. Commun. Nonlinear Sci. Numer. Simul. 22(1), 396–406 (2015)

    Google Scholar 

  16. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A 284(1), 376–384 (2000)

    Google Scholar 

  17. Rivero, M., Trujillo, J.J., Vázquez, L., Velasco, M.P.: Fractional dynamics of populations. Appl. Math. Comput. 218(3), 1089–1095 (2011)

    Google Scholar 

  18. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2010)

    Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations. Academic, San Diego (1998)

    Google Scholar 

  20. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific (2010)

    Google Scholar 

  21. Yang, X.J., Gao, F., Ju, Y.: General Fractional Derivatives with Applications in Viscoelasticity. Academic (2020)

    Google Scholar 

  22. Gemant, A.: A method of analyzing experimental results obtained from elastiviscous bodies. Physics 7, 311–317 (1936)

    Google Scholar 

  23. Blair, G.S.: The role of psychophysics in rheology. J. Colloid Sci. 2(1), 21–32 (1947)

    Google Scholar 

  24. Gerasimov, A.N.: A generalization of linear laws of deformation and its application to problems of internal friction. Akad. Nauk SSSR. Prikl. Mat. Meh. 12, 251–260 (1948). (Russian)

    Google Scholar 

  25. Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento 1(2), 161–198 (1971)

    Google Scholar 

  26. Rossikhin, Y.A., Shitikova, M.V.:. Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63(1), 010801 (2010)

    Google Scholar 

  27. Bagley, R.: On the equivalence of the Riemann-Liouville and the Caputo fractional order derivatives in modeling of linear viscoelastic materials. Fractional Calculus and Applied Analysis 10(2), 123–126 (2007)

    Google Scholar 

  28. Gao, F., Yang, X.J.: Fractional Maxwell fluid with fractional derivative without singular kernel. Therm. Sci. 20, 871–877 (2016)

    Google Scholar 

  29. Yang, X.J., Gao, F., Srivastava, H.M.: New rheological models within local fractional derivative. Romanian Rep. Phys. 69(3), 113 (2017)

    Google Scholar 

  30. Yang, X.J.: New general fractional-order rheological models within kernels of Mittag-Leffler functions. Rom. J. Phys. 69(4), 115 (2017)

    Google Scholar 

  31. Rabotnov, Y.: Equilibrium of an elastic medium with after effect (in Russian). Prikladnaya Matematika i Mekhanika 12(1), 53–62 (1948)

    Google Scholar 

  32. Stiassnie, M.: On the application of fractional calculus for the formulation of viscoelastic models. Appl. Math. Model. 3(4), 300–302 (1979)

    Google Scholar 

  33. Koeller, R.C.: A theory relating creep and relaxation for linear materials with memory. J. Appl. Mech. 77(3), 031008 (2010)

    Google Scholar 

  34. Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30(1), 133–155 (1986)

    Google Scholar 

  35. Heymans, N., Bauwens, J.C.: Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheologica Acta 33(3), 210–219 (1994)

    Google Scholar 

  36. Schiessel, H., Metzler, R., Blumen, A., Nonnenmacher, T.F.: Generalized viscoelastic models: their fractional equations with solutions. J. Phys. A 28(23), 6567 (1995)

    Google Scholar 

  37. Nutting, P.G.: A new general law of deformation. J. Franklin Inst. 191(5), 679–685 (1921)

    Google Scholar 

  38. Yang, X.-J.: Theoretical studies on general fractional-order viscoelasticity, Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China (2017)

    Google Scholar 

  39. Yang, X.-J.: General fractional calculus: a new prospective on viscoelasticity. In: International Workshop on Theory and Applications of Fractional Partial Differential Equations. Qingdao, China (2018)

    Google Scholar 

  40. Yang, X.J.: General Fractional Derivatives: Theory, Methods and Applications. CRC Press (2019)

    Google Scholar 

  41. Yang, X.J., Machado, J.T., Baleanu, D.: Anomalous diffusion models with general fractional derivatives within the kernels of the extended Mittag-Leffler type functions. Romanian Rep. Phys 69(4), 115 (2017)

    Google Scholar 

  42. Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag-Leffler function and generalized fractional calculus operators. Integr. Transf. Special Funct. 15(1), 31-49 (2004)

    Google Scholar 

  43. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Thermal Sci 20(2), 763–769 (2016)

    Google Scholar 

  44. Kiryakova, V.S.: Generalized Fractional Calculus and Applications. CRC Press (1993)

    Google Scholar 

  45. Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integr. Eqn. Oper. Theory 71(4), 583–600 (2011)

    Google Scholar 

  46. Mittag-Leffler, G.M., Sur La Nouvelle Fonction \(E_\alpha \left( x \right)\). Comptes Rendus de l’Acad′emie des Sciences, 137, 554–558 (1903)

    Google Scholar 

  47. Wiman, A.: über Den Fundamental Satz in Der Theorie Der Funktionen \(E_\alpha \left( x \right)\). Acta Math. 29, 217–234 (1905)

    Google Scholar 

  48. Prabhakar, T.R.: A singular integral equation with a generalized mittag leffler function in the kernel. Yokohama Math. J. 19(1), 7–15 (1971)

    Google Scholar 

  49. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.:  Mittag-Leffler Functions, Related Topics and Applications, vol. 2. Springer, Berlin (2014)

    Google Scholar 

  50. Hille, E., Tamarldn, J.D.: On the theory of linear integral equations. Ann. Math. 31, 479–528 (1930)

    Google Scholar 

  51. Hille, E.: Notes on linear transformations. II. Analyticity of semi-groups. Ann. Math. 40(1), 1–47 (1939)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the State Key Research Development Program of the People’s Republic of China (Grant No.2016YFC0600705), the Natural Science Foundation of China (Grant No.51323004), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, XJ., Gao, F., Ju, Y. (2022). General Fractional Calculus with Nonsingular Kernels: New Prospective on Viscoelasticity. In: Singh, J., Dutta, H., Kumar, D., Baleanu, D., Hristov, J. (eds) Methods of Mathematical Modelling and Computation for Complex Systems. Studies in Systems, Decision and Control, vol 373. Springer, Cham. https://doi.org/10.1007/978-3-030-77169-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77169-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77168-3

  • Online ISBN: 978-3-030-77169-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics