Skip to main content

Mathematical Analysis of Two Unequal Collinear Cracks in a Piezo-Electro-Magnetic Media

  • Chapter
  • First Online:
Methods of Mathematical Modelling and Computation for Complex Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 373))

  • 633 Accesses

Abstract

In this chapter, we begin our work of studying two unequal collinear semi-permeable cracks in a magneto-electro-elastic media. We employ the Stroh’s formalism and complex variable technique to solve the physical problem. We derive the closed form analytic solutions for various fracture parameters, and study the effect of volume fraction and inter-crack distance on these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, B.L., Han, J.C.: Discussion on electromagnetic crack face boundary conditions for the fracture mechanics of magneto-electro-elastic materials. Acta Mechanica Sinica 22, 233–242 (2006)

    Article  Google Scholar 

  2. Zhong, X.C., Li, X.F.: Closed-form solution for an eccentric anti-plane shear crack normal to the edges of a magnetoelectroelastic strip. Acta Mechanica 186, 1–15 (2006)

    Article  Google Scholar 

  3. Wang, B.L., Mai, Y.W.: Exact and fundamental solution for an anti-plane crack vertical to the boundaries of a magnetoelectroelastic strip. Int. J. Damage Mech. 16, 77–94 (2007)

    Google Scholar 

  4. Li, Y.D., Lee, K.Y.: Fracture analysis and improved design for a symmetrically bonded smart structure with linearly non-homogeneous magnetoelectroelastic properties. Eng. Fracture Mech. 75, 3161–3172 (2008)

    Article  Google Scholar 

  5. Zheng, R.F., Wu, T.H., Li, X.Y., Chen, W.Q.: Analytical and numerical analyses for a penny-shaped crack embedded in an infinite transversely isotropic multi-ferroic composite medium: semi-permeable electro-magnetic boundary condition. Smart Mater. Struct. 27, 065020 (2018)

    Google Scholar 

  6. Jangid, K., Bhargava, R.R.: Influence of polarization on two unequal semi-permeable cracks in a piezoelectric media. Strength Fracture Complexity 10(3–4), 129–144 (2017)

    MATH  Google Scholar 

  7. Chyanbin, H.: Explicit solutions for collinear interface crack problems. Int. J. Solids Struct. 30, 301–312 (1993)

    Article  MathSciNet  Google Scholar 

  8. Li, Y.D., Lee, K.Y., Dai, Y.: Dynamic stress intensity factors of two collinear mode-III cracks perpendicular to and on the two sides of a bi-FGM weak discontinuous interface. Euro. J. Mech. Solid 27, 808–823 (2008)

    Article  MathSciNet  Google Scholar 

  9. Zhong, X.C., Liu, F., Li, X.F.: Transient response of a magnetoelectroelastic solid with two collinear dielectric cracks under impacts. Int. J. Solids Struct. 46, 2950–2958 (2009)

    Article  Google Scholar 

  10. Zhou, Z.G., Wang, B., Sun, Y.G.: Two collinear interface cracks in magneto-electro-elastic composites. Int. J. Eng. Sci. 42, 1155–1167 (2004)

    Article  Google Scholar 

  11. Zhou, Z.G., Wu, L.Z., Wang, B.: The dynamic behavior of two collinear interface cracks in magneto-electro-elastic materials. Euro. J. Mech. Solid 24, 253–262 (2005)

    Article  Google Scholar 

  12. Zhou, Z.G., Zhang, P.W., Wu, L.Z.: Solutions to a limited-permeable crack or two limited-permeable collinear cracks in piezoelectric/piezomagnetic materials. Arch. Appl. Mech. 77, 861–882 (2007)

    Article  Google Scholar 

  13. Zhou, Z.G., Tang, Y.L., Wu, L.Z.: Non-local theory solution to two collinear limited-permeable mode-I cracks in a piezoelectric/piezomagnetic material plane. Sci. China Phys. Mech. Astronout. 55, 1272–1290 (2012)

    Article  Google Scholar 

  14. Wang, B.L., Han, J.C., Mai, Y.W.: Exact solution for mode-III cracks in a magnetoelectroelastic layer. Int. J. Appl. Electromag. Mech. 24, 33–44 (2006)

    Article  Google Scholar 

  15. Wang, B.L., Mai, Y.W.: An exact analysis for mode-III cracks between two dissimilar magnetoelectroelastic layers. Mech. Compos. Mater. 44, 533–548 (2008)

    Article  Google Scholar 

  16. Singh, B.M., Rokne, J., Dhaliwal, R.S.: Closed-form solutions for two anti-plane collinear cracks in a magnetoelectroelastic layer. Euro. J. Mech. Solid 28, 599–609 (2009)

    Article  Google Scholar 

  17. Jangid, K., Bhargava, R.R.: Complex variable-based analysis for two semi-permeable collinear cracks in a piezoelectromagnetic media. Mech. Adv. Mater. Struct. 24, 1007–1016 (2017)

    Article  Google Scholar 

  18. Deeg, W.E.F.: Tha analysis of dislocation, Crack and inclusion problems in piezoelectric solids, Ph.D. thesis, Stanford University (1980)

    Google Scholar 

  19. Parton, V.Z.: Fracture mechanics of piezoelectric materials. Acta Astronout. 3, 671–683 (1976)

    Article  Google Scholar 

  20. Hao, T.H., Shen, Z.Y.: A new electric boundary condition of electric fracture mechanics and its applications. Eng. Fracture Mech. 47, 793–802 (1994)

    Article  Google Scholar 

  21. Stroh, A.N.: Dislocations and cracks in anisotropic elasticity. Philoso. Mag. 3, 625–646 (1958)

    Article  MathSciNet  Google Scholar 

  22. Muskhelishvili, N.I.: Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff Leyden (1975)

    Google Scholar 

  23. Wang, B., Mai, Y.: Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials. Int. J. Solids Struct. 44, 387–398 (2007)

    Article  Google Scholar 

  24. Zhong, X.C.: Analysis of a dielectric crack in a magnetoelectroelastic layer. Int. J. Solids Struct. 46, 4221–4230 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendix (A)

\(X_{1}(z)=\sqrt{(z-a)(z-b)(z-c)(z-d)},\)         \(P_{1}(z)=C_{0}z^{2}+C_{1}(z)+C_{2};\)

\(\triangle =\Lambda _{22}(\Lambda _{44}\Lambda _{55}-\Lambda _{45}\Lambda _{54}) - \Lambda _{24}(\Lambda _{42}\Lambda _{55}-\Lambda _{45}\Lambda _{52}) + \Lambda _{25}(\Lambda _{42}\Lambda _{54}-\Lambda _{44}\Lambda _{52});\)

\(\triangle _{1}=-\sigma _{22}^{\infty }(\Lambda _{44}\Lambda _{55}-\Lambda _{45}\Lambda _{54}) - (D^{c}-D_{2}^{\infty })(\Lambda _{24}\Lambda _{55}-\Lambda _{25}\Lambda _{54}) + (B^{c}-B_{2}^{\infty })(\Lambda _{25}\Lambda _{44}-\Lambda _{24}\Lambda _{45});\)

\(\triangle _{2}=\sigma _{22}^{\infty }(\Lambda _{42}\Lambda _{55}-\Lambda _{45}\Lambda _{52}) + (D^{c}-D_{2}^{\infty })(\Lambda _{22}\Lambda _{55}-\Lambda _{25}\Lambda _{52}) + (B^{c}-B_{2}^{\infty })(\Lambda _{25}\Lambda _{42}-\Lambda _{22}\Lambda _{45});\)

\(\triangle _{3}=\sigma _{22}^{\infty }(\Lambda _{44}\Lambda _{52}-\Lambda _{42}\Lambda _{54}) + (D^{c}-D_{2}^{\infty })(\Lambda _{24}\Lambda _{52}-\Lambda _{22}\Lambda _{54}) + (B^{c}-B_{2}^{\infty })(\Lambda _{22}\Lambda _{44}-\Lambda _{24}\Lambda _{42});\)

\(C_{0}=a_{11}a_{22}-a_{12}a_{21},\)    \(C_{1}=a_{20}a_{12}-a_{10}a_{22},\)    \(C_{2}=a_{21}a_{10}-a_{11}a_{20},\)    \(k^{2}=\dfrac{(a-b)(c-d)}{(a-c)(b-d)};\)

\(g=\dfrac{2}{\sqrt{(a-c)(b-d)}},\)    \(\alpha ^{2}=\dfrac{d-c}{a-c},\)    \(\beta ^{2}=\dfrac{a-b}{a-c},\)    \(a_{11}=g[aF(k)+(d-a){{\Pi }}(\alpha ^{2},k)];\)

\(a_{12}=gF(k),\)         \(a_{21}=g[cF(k)+(b-c){{\Pi }}(\beta ^{2},k)],\)         \(a_{22}=gF(k);\)

\(a_{10}=g\left[ a^{2}F(k)+2a(d-a){{\Pi }}(\alpha ^{2},k)+(d-a)^{2}V_{2}\right] ;\)

\(a_{20}=g\left[ c^{2}F(k)+2c(b-c){{\Pi }}(\beta ^{2},k)+(b-c)^{2}V_{3}\right] ;\)

\(V_{2}=\dfrac{1}{2(\alpha ^{2}-1)(k^{2}-\alpha ^{2})}\left\{ \alpha ^{2}E(k)+(k^{2}-\alpha ^{2})F(k)+(2\alpha ^{2}k^{2}+2\alpha ^{2}-\alpha ^{4}-3k^{2}){{\Pi }}(\alpha ^{2},k)\right\} ;\)

\(V_{3}=\dfrac{1}{2(\beta ^{2}-1)(k^{2}-\beta ^{2})}\left\{ \beta ^{2}E(k)+(k^{2}-\beta ^{2})F(k)+(2\beta ^{2}k^{2}+2\beta ^{2}-\beta ^{4}-3k^{2}){{\Pi }}(\beta ^{2},k)\right\} ;\)

where F(k),  E(K) and \({{\Pi }}(\alpha ^{2},k)\) are the complete elliptic integrals of the first, second and third kind, respectively.

Appendix (B)

\(\alpha _{1}^{2}=\dfrac{a}{d}\alpha ^{2},\)    \(\beta _{1}^{2}=\dfrac{c}{b}\beta ^{2},\)    \(\nu =sin^{-1}\sqrt{\dfrac{(a-c)(y-d)}{(d-c)(a-y)}},\)    \(\psi =sin^{-1}\sqrt{\dfrac{(a-c)(y-b)}{(a-b)(y-c)}};\)

\(S_{1}=\alpha ^{2}E(\nu ,k)+(k^{2}-\alpha ^{2})F(\nu ,k)+(2\alpha ^{2}k^{2}+2\alpha ^{2}-\alpha ^{4}-3k^{2}){{\Pi }}(\nu ,\alpha ^{2},k) - \dfrac{\alpha ^{4}\text {sn}{u}\text {cn}{u}\text {dn}{u}}{1-\alpha ^{2}\text {sn}^{2}{u}};\)

where snu, cnu and dnu are the Jacobian elliptic functions.

\(S_{2}=\beta ^{2}E(\psi ,k)+(k^{2}-\beta ^{2})F(\psi ,k)+(2\beta ^{2}k^{2}+2\beta ^{2}-\beta ^{4}-3k^{2}){{\Pi }}(\psi ,\beta ^{2},k) - \dfrac{\beta ^{4}\text {sn}{u}\text {cn}{u}\text {dn}{u}}{1-\beta ^{2}\text {sn}^{2}{u}};\)

\(S_{3}=d^{2}g\dfrac{\alpha _{1}^{4}}{\alpha ^{4}}\left\{ F(\nu ,k)+\dfrac{2(\alpha ^{2}-\alpha _{1}^{2})}{\alpha _{1}^{2}}{{\Pi }}(\nu ,\alpha ^{2},k)+ \dfrac{(\alpha ^{2}-\alpha _{1}^{2})^{2}}{2\alpha _{1}^{4}(\alpha ^{2}-1)(k^2-\alpha ^{2})}S_{1}\right\} ;\)

\(S_{4}=dg\dfrac{\alpha _{1}^{2}}{\alpha ^{2}}\left\{ F(\nu ,k)+\dfrac{\alpha ^{2}-\alpha _{1}^{2}}{\alpha _{1}^{2}}{{\Pi }}(\nu ,\alpha ^{2},k)\right\} ,\)         \(S_{5}=gF(\nu ,k);\)

\(S_{6}=b^{2}g\dfrac{\beta _{1}^{4}}{\beta ^{4}}\left\{ F(\psi ,k)+\dfrac{2(\beta ^{2}-\beta _{1}^{2})}{\beta _{1}^{2}}{{\Pi }}(\psi ,\beta ^{2},k)+ \dfrac{(\beta ^{2}-\beta _{1}^{2})^{2}}{2\beta _{1}^{4}(\beta ^{2}-1)(k^2-\beta ^{2})}S_{2}\right\} ;\)

\(S_{7}=bg\dfrac{\beta _{1}^{2}}{\beta ^{2}}\left\{ F(\psi ,k)+\dfrac{\beta ^{2}-\beta _{1}^{2}}{\beta _{1}^{2}}{{\Pi }}(\psi ,\beta ^{2},k)\right\} ,\)         \(S_{8}=gF(\psi ,k);\)

where F(, k),  E(, k) and \({{\Pi }}(,\,\,k)\) are the incomplete elliptic integrals of first, second and third kinds, respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jangid, K. (2022). Mathematical Analysis of Two Unequal Collinear Cracks in a Piezo-Electro-Magnetic Media. In: Singh, J., Dutta, H., Kumar, D., Baleanu, D., Hristov, J. (eds) Methods of Mathematical Modelling and Computation for Complex Systems. Studies in Systems, Decision and Control, vol 373. Springer, Cham. https://doi.org/10.1007/978-3-030-77169-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77169-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77168-3

  • Online ISBN: 978-3-030-77169-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics