Skip to main content

Part of the book series: The Society of Fire Protection Engineers Series ((SFPES))

Abstract

This chapter examines structural fire engineering considerations that are specific to timber, which is a relatively emerging construction material for large engineered buildings. First, thermal and mechanical properties of timber at elevated temperatures are discussed. Second, failure modes specific to timber structures (e.g., adhesive debonding) are examined. Lastly, pertinent analysis techniques for structural fire engineering applications involving timber structures are presented. The renaissance of timber as a construction material, allied to its application in less common building forms, has led researchers to map many challenges that should be considered and addressed when seeking to demonstrate that an adequate level of structural fire safety has been achieved when adopting timber. In parallel, new research studies have emerged which fundamentally seek to understand the timber pyrolysis process and its translation to the enclosure fire context. These challenges and the recent prevalence of timber-associated fire research shape the content of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartlett, A., Hadden, R., Bisby, L. and Lane, B. (2016). “Auto-extinction of engineered timber in relation to fire point theory,” in Proceedings of the 2016 Interflam Conference, Royal Holloway, 2016.

    Google Scholar 

  2. Bartlett, A., Wiesner, F., Hadden, R., Bisby, L., Lane, B., Lawrence, A., Palma, P. & Frangi, A. (2016), Needs for total fire engineering of mass timber buildings. In 2016 World Conference on Timber Engineering (WCTE 2016). Vienna.

    Google Scholar 

  3. Hopkin, D., et al. (2016). Timber structures subject to non-standard fire exposure—advances & challenges. Proceedings of the World Conference on Timber Engineering 2016 (WCTE 2016), TU Wien, Aug 22–25.

    Google Scholar 

  4. Emberley, R., Gorska, P. C., Bolanos, A., Lucherini, A., Solarte, A., Soriguer, D., Gutierrez, G. M., Humphreys, K., Hidalgo, J. P., Maluk, C., Law, A., & Torero, J. L. (2017). Description of small and large-scale CLT fire tests. Fire Safety Journal. https://doi.org/10.1016/j.firesaf.2017.03.024

  5. Hadden, R. M., Bartlett, A. I., Hidalgo, J. P., Santamaria, S., Wiesner, F., Bisby, L. A., Deeny, S., & Lane, B. (2017). Effects of exposed cross laminated timber on compartment fire dynamics. Fire Safety Journal, 91, 480–489.

    Article  Google Scholar 

  6. Green, D. W., Winandy, J. E., & Kretschmann, D. E. (1999). ‘Chapter 4 – Mechanical properties of wood’ wood handbook—Wood as an engineering material. Gen. Tech. Rep. FPL–GTR–113 (p. 45). U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

    Google Scholar 

  7. Peng, L. (2010). Performance of heavy timber connections in fire. Thesis. Department of Civil and Environmental Engineering Carleton University.

    Google Scholar 

  8. American Institute of Timber Construction. (2012). Timber construction manual. J Wiley & Sons.

    Book  Google Scholar 

  9. Torero, J. (2016). Flaming ignition of solid fuels. In M. J. Hurley et al. (Eds.), SFPE handbook of fire protection engineering. Springer.

    Google Scholar 

  10. Browne, F.L. (1958). Theories of the combustion of wood and its control. A survey of the literature. Report 2136. Madison, Wisconsin: Forest Products Laboratory, US Department of Agriculture.

    Google Scholar 

  11. Friquin, K. L. (2011). Material properties and external factors influencing the charring rate of solid wood and glue‐laminated timber. Fire and Materials, 35, 303–327. https://doi.org/10.1002/fam.1055

    Article  Google Scholar 

  12. Drysdale, D. (2011). An introduction to fire dynamics (3rd ed.). Wiley.

    Book  Google Scholar 

  13. Babrauskas, V. (2002). Ignition of wood: A review of the state of the art. Journal of Fire Protection Engineering, 12(3), 163–189.

    Article  Google Scholar 

  14. Hopkin, D., Gorska, C., Spearpoint, M. J., Fu, I., Krenn, H., Sleik, T., & Stapf, G. (2021). Experimental characterisation of the fire behaviour of CLT ceiling elements from different leading suppliers, in: Applications of Structural Fire Engineering. Presented at the Applications of Structural Fire Engineering, Ljubljana, Slovenia.

    Google Scholar 

  15. Mikkola, E. (1990). Charring of wood. VTT research report 689. Technical Research Centre of Finland.

    Google Scholar 

  16. White, R. H., & Nordheim, E. V. (1992). Fire Technology, 28, 5. https://doi.org/10.1007/BF01858049

    Article  Google Scholar 

  17. Tran, H. C., & White, R. H. (1992). Burning rate of solid wood measured in a heat release rate calorimeter. Fire and Materials, 16(4), 197–206.

    Article  Google Scholar 

  18. Petrella, R. V. (1979). The mass burning rate and mass transfer number of selected polymers, wood, and organic liquids. Polymer-Plastic Technology and Engineering, 13(1), 83–103.

    Article  Google Scholar 

  19. Tewarson, A., & Pion, R. F. (1976). Flammability of plastics–I. burning intensity. Combustion and Flame, 26, 85–103.

    Article  Google Scholar 

  20. Bartlett, A. I., Hadden, R. M., & Bisby, L. A. (2019). Fire Technology, 55, 1. https://doi.org/10.1007/s10694-018-0787-y

    Article  Google Scholar 

  21. Ohlemiller, T., & Shaub, W. (1988). Products of wood smolder and their relation to wood-burning stoves (No. NBSIR-88-3767). National Bureau of Standards, Washington, DC (USA). Center for Fire Research.

    Google Scholar 

  22. Ohlemiller, T. J. (2002). Smoldering combustion. SFPE handbook of fire protection engineering, 3.

    Google Scholar 

  23. Beyler, C. L., Gratkowski, M. T., Sikorski, J. (2006). Radiant smoldering ignition of virgin plywood and plywood subjected to prolonged smoldering. International Symposium on Fire Investigation and Technology.

    Google Scholar 

  24. Swann, J. H., Hartman, J. R., Beyler, C. L. (2008). Study of radiant smoldering ignition of plywood subjected to prolonged heating using the cone calorimeter, TGA, and DSC. Proceedings of the 9th IAFSS Symposium, 9, 155–166.

    Google Scholar 

  25. Crielaard, R., van de Kuilen, J.-W., Terwel, K., Ravenshorst, G., Steenbakkers, P., (2019). Self-extinguishment of cross-laminated timber. Fire Safety Journal 105, 244–260. https://doi.org/10.1016/j.firesaf.2019.01.008

  26. Buchanan, A. H. (2001). Structural design for fire safety (1st ed.). John Wiley and Sons Ltd.

    Google Scholar 

  27. Hopkin, D. (2011). Fire performance of engineered timber products and systems. Thesis. Loughborough University, UK.

    Google Scholar 

  28. Heitz, J. (2016). Fire resistance in american heavy timber construction. https://doi.org/10.1007/978-3-319-32128-8_2

  29. Kurokawa, T. (1990). Heavy timber construction. Habitat Intl., 14(2/3), 255–261.

    Article  Google Scholar 

  30. ICC. (2015). 2015 international building code. International Code Council.

    Google Scholar 

  31. Dickson, M., & Parker, D. (2015). Engineered timber and structural form in sustainable design. Proceedings of the Institution of Civil Engineers - Construction Materials, 168(4), 161–172.

    Article  Google Scholar 

  32. Lam, F. (2010). Timber products and manufacturing processes. ICE Manual of Construction Materials. Institution of Civil Engineers

    Google Scholar 

  33. Thelandersson, S., & Larsen, H. (2003). Timber engineering. John Wiley & Sons. ISBN9780470844694.

    Google Scholar 

  34. Aghayere, A., & Vigil, J. (2007). Structural wood design—A practice oriented approach using the ASD method (1st ed.). Wiley.

    Book  Google Scholar 

  35. Kolb, J. (2008). Systems in timber engineering (1st ed.). Birkhauser Lignum DGfH.

    Book  Google Scholar 

  36. Karacebeyli, E., & Douglas, B. (2013). CLT handbook-US edition. FPInnovations and Binational Softwood Lumber Council, Point-Claire, Quebec.

    Google Scholar 

  37. Sutton, Black, & Walker. (2011). Cross-laminated timber. An introduction to low-impact building materials. IP 17/11. BRE-IHS Press.

    Google Scholar 

  38. Richardson, L. R. (2004). Failure of floor assemblies constructed with timber joists, wood trusses or I joists during fire resistance tests. In V. Babrauskas (Ed.), Interflam 2004- proceedings of the tenth international conference, 5th–7th July 2004 (pp. 603–608). Interscience.

    Google Scholar 

  39. Dinwoodie, J. M. (2000). Timber- nature and behavior (1st ed.). Taylor and Francis.

    Google Scholar 

  40. Illston, J. M. (1994). Construction materials—Their nature and behavior (2nd ed.). E & FN Spon.

    Google Scholar 

  41. Ho, T. X., Dao, T. N., Aaleti, S., van de Lindt, J. W., & Rammer, D. R. (2017). Hybrid system of Unbonded post-tensioned CLT panels and light-frame wood shear walls. Journal of Structural Engineering, 143, 2.

    Article  Google Scholar 

  42. Leijten, A. J. M. (2011). Requirements for moment connections in statically indeterminate timber structures. Engineering Structures, 33(2011), 3027–3032. https://doi.org/10.1016/j.engstruct.2011.03.014

    Article  Google Scholar 

  43. Brandon, D., Maluk, C., Ansell, M. P., Harris, R., Walker, P., Bisby, L., & Bregulla, J. (2015). Fire performance of metallic-free timber connections. Proceedings of the Institute of Civil Engineers, 168(4), 173–186.

    Google Scholar 

  44. Buchanan, A., Deam, B., Fragiacomo, M., Pampanin, S., & Palermo, A. (2008). Multi-storey prestressed timber buildings in New Zealand. Structural Engineering International, 18(2), 166–173.

    Article  Google Scholar 

  45. Leijten, A. J. M. (1998). Densified veneer wood reinforced timber joints with expanded tube fasteners. PhD thesis, Delft University Press. ISBN 90–407–1757-5.

    Google Scholar 

  46. Fredlund, B. (1988). A model for heat & mass transfer in timber structures during fire: A theoretical, numerical and experimental study. LUTVDG/(TVBB-1003). Lund University.

    Google Scholar 

  47. Janssens, M. (1994). Thermo-physical properties for wood pyrolysis models, Proceedings of the Pacific timber engineering conference, July 11th–15th 1994, Gold Cost, Australia.

    Google Scholar 

  48. Knudson, R. M., & Schniewind, A. P. (1975). Performance of structural wood members exposed to fire. Forest Products Journal, 25(2), 23–32.

    Google Scholar 

  49. White, R. H., & Schaffer, E. (1978). Application of CMA programme to wood charring. Fire Technology, 15, 279–290.

    Article  Google Scholar 

  50. Thomas, G. (1997). Fire resistance of light timber framed walls and floors. Thesis. University of Canterbury Press.

    Google Scholar 

  51. Harmathy, T. Z. (1988). Properties of building materials—Section 1 chapter 26. In P. J. Dinenno, C. L. Beyler, R. L. Custer, W. D. Walton, & J. M. Watts (Eds.), The SFPE handbook of fire protection engineering (pp. 388–391). NFPA.

    Google Scholar 

  52. Gammon, B. W. (1987). Reliability analysis of wood frame wall assemblies exposed to fire. PhD thesis edn. University of California.

    Google Scholar 

  53. König, J., & Walleij, L. (2000). Timber frame assemblies exposed to standard and parametric fires part 2: A design model for standard fire exposure. I0001001. SP Trätek.

    Google Scholar 

  54. European Committee for Standardization. (2004). Eurocode 5: Design of timber structures—Part 1–2: General – Structural fire design. EN 1995-1-2. CEN.

    Google Scholar 

  55. König, J. (2006). Effective thermal actions and thermal properties of timber members in natural fires. Fire and Materials, 30(2), 51–63.

    Article  Google Scholar 

  56. Dunlap, F. (1912). The specific heat of wood. Bulletin 110. US forest service.

    Google Scholar 

  57. Fuller, J. J., Leichti, R. J., & White, R. H. (1992). Temperature distribution in a nailed gypsum stud joint exposed to fire. Fire and Materials, 16(2), 95–99.

    Article  Google Scholar 

  58. Mehaffey, J. R., Cuerrier, P., & Carisse, G. (1994). A model for predicting heat transfer through gypsum board wood-stud walls exposed to fire. Fire and Materials, 18(5), 297–305.

    Article  Google Scholar 

  59. Lie, T. T. (1992). Structural fire protection. ASCE manuals and reports of engineering practice. ASCE.

    Google Scholar 

  60. Cachim, P. B., & Franssen, J. M. (2009). Comparison between the charring rate model and the conductive model of Eurocode 5. Fire and Materials, 33(3), 129–143.

    Article  Google Scholar 

  61. Trada (2019). Wood species database | TRADA. [online] Trada.co.uk. from https://www.trada.co.uk/wood-species/. Retrieved July 29, 2019

  62. Buchanan, A. H. (2000). Fire performance of timber construction. Progress in Structural Engineering and Materials, 2(3), 278–289.

    Article  Google Scholar 

  63. König, J., & Walleij, L. (1999). One-dimensional charring of timber exposed to standard and parametric fires in initially unprotected and post protection situations I9908029. SP Trätek.

    Google Scholar 

  64. Matala, A., Hostikka, S., & Mangs, J. (2008). Estimation of pyrolysis model parameters for solid materials using thermogravimetric data. In Fire safety science—Proceedings of the 8 th international symposium (pp. 1213–1224). International Association of Fire Safety Science.

    Google Scholar 

  65. European Committee for Standardization. (2003). Structural timber—Strength classes. EN 338:2003. CEN.

    Google Scholar 

  66. Bazan, I. M. M. (1980). Ultimate bending strength of timber beams. Thesis edn. Nova Scotia Technical College.

    Google Scholar 

  67. Hopkin, D. (2012). Predicting the thermal response of timber structures in natural fires using computational 'heat of hydration' principles. Fire and Materials. https://doi.org/10.1002/fam.2133

  68. Wang, X., Fleischmann, C., & Spearpoint, M. (2016). Parameterising study of tunnel experiment materials for application to the fire dynamics simulator pyrolysis model. Journal of Fire Sciences, 1–25. https://doi.org/10.1177/0734904116667738

  69. Mindeguia, J.-C., Cueff, G., Dréan, V., & Auguin, G. (2018). Simulation of charring depth of timber structures when exposed to non-standard fire curves. Journal of Structural Fire Engineering, 9(1), 63–76. https://doi.org/10.1108/JSFE-01-2017-0011

    Article  Google Scholar 

  70. Richter, F., Atreya, A., Kotsovinos, P., & Rein, G. (2019). The effect of chemical composition on the charring of wood across scales. Proceedings of the Combustion Institute, 37(3), 4053–4061.

    Article  Google Scholar 

  71. Wade, C., Hopkin, D., Su, J., Spearpoint, M., & Fleischmann, C. (2019). Enclosure fire model for mass timber construction—Benchmarking with a kinetic wood pyrolysis sub model. Interflam.

    Google Scholar 

  72. Harte, A. (2009). Timber engineering: An introduction. In M. Forde (Ed.), ICE manual of construction materials (Vol. 2, 1st ed., pp. 707–715). Thomas Telford.

    Google Scholar 

  73. Thunnel, B. (1941). Hallfastetsegenskaper hos svenskt furuvirke utan kvistar och defekter. Handlingar Nr. 161. Ingenjorsvetenskapsakademien.

    Google Scholar 

  74. Hopkin, D., El-Rimawi, J., Silberschmidt, V., & Lennon, T. (2011). The impact of assumed fracture energy on the fire performance of timber beams. In F. Wald (Ed.), Proceedings of the 2nd international conference on applications in structural fire engineering, 29th April 2011 (pp. 349–354). Czech Technical University.

    Google Scholar 

  75. Hopkin, D., Lennon, T., El-Rimawi, J., & Silberschmidt, V. (2012). Advanced fire Design of Timber Structures Using Computational Techniques—Simple Indeterminate Structures. Journal of Structural Fire Engineering, 3(2), 215–233.

    Article  Google Scholar 

  76. Kollman, F. (1951). Uber das mechanische verhalten von kiefernholz bei biegung und temperaturen zwischen 20 und 100. Meddelande 22. Svenska Traforskningsintitutet.

    Google Scholar 

  77. Schaffer, E. L. (1973). Effect of pyrolytic temperatures on the longitudinal strength of dry Douglas fir. ASTM Journal for Testing and Evaluation, 1(4), 319–329.

    Article  Google Scholar 

  78. Schaffer, E. L. (1984). Structural fire design: Wood. FFL 450. Forest products lab.

    Google Scholar 

  79. Gerhards, C. C. (1982). Effect of moisture content and temperature on mechanical properties of wood: An analysis of immediate effects. Wood and Fiber Science, 14(1), 4–36.

    Google Scholar 

  80. Östman, B. (1985). Wood tensile strength at temperatures and moisture contents simulating fire conditions. Wood and Science Technology, 19, 103–106.

    Article  Google Scholar 

  81. Lau, P. W. C. and Barrett, J. D. (1997). Modelling tension strength behavior of structural lumber exposed to elevated temperatures. Proceedings of the fourth international symposium on fire safety science. Australia: Melbourne

    Google Scholar 

  82. Konig, J., & Noren, J., (1991). Fire exposed load bearing wood frame members. 9112080. Stockholm: SP Trätek.

    Google Scholar 

  83. Collier, P. (1993). A method to predict the fire resistance performance of load bearing light timber framed walls. Building research association of New Zealand.

    Google Scholar 

  84. König, J., Noren, J., Olesen, F. B., & Hansen, F. T. (1997). Timber frame assemblies exposed to standard and parametric fires part 1: Fire tests. I9702015. SP Trätek.

    Google Scholar 

  85. Young, S. A. (1996). Elevated temperature mechanical properties of radiata pine in compression. Internal report for CESARE. Victoria University.

    Google Scholar 

  86. Nyman, C. (1980). The effect of temperature and moisture on the strength of wood and glue joists. VTT forest products no. 6. Technical Research Centre of Finland.

    Google Scholar 

  87. Preusser, R. (1968). Plastic and elastic behavior of wood affected by heat in open systems. Holztechnologie, 9(4), 229–231.

    Google Scholar 

  88. British Standards Institution. (2004). Gypsum plasterboards- definitions, requirements and test methods. BS EN 520:2004. BSI.

    Google Scholar 

  89. ASTM C1396 / C1396M – 17 (2017) Standard specification for gypsum board. ASTM International, .

    Google Scholar 

  90. Thomas, G. (2002). Thermal properties of gypsum plasterboard at high temperatures. Fire and Materials, 26(1), 37–45.

    Article  Google Scholar 

  91. Clancy, P. (2001). Advances in modelling heat transfer through wood framed walls in fire. Fire and Materials, 25(6), 241–254.

    Article  Google Scholar 

  92. Sultan, M. A. (1996). A model for predicting heat transfer through non-insulated unloaded steel-stud gypsum board wall assemblies exposed to fire. Fire Technology, 32(3), 239–259.

    Article  Google Scholar 

  93. Benichou, N., Sultan, M. A., Maccallum, C., & Hum, J. (2001). Thermal properties of wood, gypsum and insulation at elevated temperatures. IR-710. NRC.

    Google Scholar 

  94. Ang, C. N., & Wang, Y. C. (2009). Effect of moisture transfer on the specific heat of gypsum plasterboard at high temperatures. Construction and Building Materials, 23(2), 675–686.

    Article  Google Scholar 

  95. Park, S. H., Manzello, S. L., Bentz, D. P., & Mizukami, T. (2009). Determining thermal properties of gypsum board at elevated temperatures. Fire and Materials, 34(5), 237–250.

    Google Scholar 

  96. Wakili, K. G., Hugi, E., Wullschleger, L., & Frank, T. H. (2007). Gypsum board in fire—modeling and experimental validation. Journal of Fire Sciences, 25(3), 267–282.

    Article  Google Scholar 

  97. Thomas, G. (2010). Modelling thermal performance of gypsum plasterboard-lined light timber frame walls using SAFIR and TASEF. Fire and Materials, 34(8), 385–406.

    Article  Google Scholar 

  98. Schleifer, V. (2009). Zum Verhalten von raumabschliessenden mehrschichtigen Holzbauteilen im Brandfall. PhD Thesis ETH No. 18156. ETH.

    Google Scholar 

  99. Lennon, T., Hopkin, D., El-Rimawi, J., & Silberschmidt, V. (2010). Large scale natural fire tests on protected engineered timber floor systems. Fire Safety Journal, 45(2010), 168–182.

    Article  Google Scholar 

  100. Jansson, R. (2004). Measurement of thermal properties at elevated temperatures- Brandforsk project 328–031. SP REPORT 2004:46. SNTRI.

    Google Scholar 

  101. Twilt, L., & Van Oerle, J. (1999). Fire characteristics for use in a natural fire design of building structures. CEC agreement 7210-SA/125–937. Profil Arbed.

    Google Scholar 

  102. Feng, M., Wang, Y. C., & Davies, J. M. (2003). Thermal performance of cold-formed thin-walled steel panel systems in fire. Fire Safety Journal, 38(4), 365–394.

    Article  Google Scholar 

  103. Just, A., Schmid, J., & König, J. (2010). Failure times of gypsum boards. In V. R. Kodur & J. M. Franssen (Eds.), Proceedings of the sixth international conference on structures in fire, 2nd-4th June 2010 (pp. 593–601). DESTech.

    Google Scholar 

  104. Just, A. (2010). Structural fire design of timber frame assemblies insulated by glass wool and covered by gypsum plasterboard. Tallinn University of Technology.

    Google Scholar 

  105. Just, A. (2010). Post protection behavior of wooden wall and floor structures completely filled with glass wool. In V. R. Kodur & J. M. Franssen (Eds.), Proceedings of the sixth international conference on structures in fire, 2nd-4th June 2010 (pp. 584–592). DESTech.

    Google Scholar 

  106. Sultan, M. A. (2010). Comparison of gypsum board fall-off in wall and floor assemblies exposed to furnace heat. In S. Grayson (Ed.), 12th international fire science and engineering conference (Interflam), 5th–7th July 2010 (pp. 1677–1682). Interscience.

    Google Scholar 

  107. Quintiere, J. G., & Rangwala, A. S. (2004). A theory for flame extinction based on flame temperature. Fire Materials, 28, 387–402. https://doi.org/10.1002/fam.835

  108. Brandon, D., Just, A., Andersson, P., & Östman, B. (2018). Mitigation of fire spread in multi-storey timber buildings – Statistical analysis and guidelines for design. RISE Report, 2018, 43.

    Google Scholar 

  109. Brandon, D., Schmid, J., Su, J., Hoehler, M., Östman, B. & Kimball, A. (2018). Experimental Fire-Simulator for Post-Flashover Compartment Fires. In: SiF 2018—The 10th International Conference on Structures in Fire, Belfast, UK: Paper presented at SiF 2018 - The 10th International Conference on Structures in Fire, Belfast, UK. New University of Ulster.

    Google Scholar 

  110. Schmid, J., Santomaso, A., Brandon, D., Wickström, U., & Frangi, A. (2018). Timber under real fire conditions – The influence of oxygen content and gas velocity on the charring behavior. Journal of Structural Fire Engineering, 9(3), 222–236. https://doi.org/10.1108/JSFE-01-2017-0013

    Article  Google Scholar 

  111. Mäger, K. N., Just, A., Schmid, J., Werther, N., Klippel, M., Brandon, D., & Frangi, A. (2017). Procedure for implementing new materials to the component additive method. Fire Safety Journal. In press. https://doi.org/10.1016/j.firesaf.2017.09.006

  112. Tiso, M., Just, A., Schmid, J., & Klippel, M. (2018). Effective cross-section method for timber frame assemblies—Definition of coefficients and zero-strength layers. Fire and Materials, 2018, 1–17. https://doi.org/10.1002/fam.2645

    Article  Google Scholar 

  113. Brandon, D., Schmid, J., & Just, A. (2016). Eurocode 5 design in comparison with fire resistance tests of unprotected timber beams. In Proceedings of 11th Conference on Performance-Based Codes And Fire Safety Design—SFPE

    Google Scholar 

  114. Schmid, J., Klippel, M., Just, A., & Frangi, A. (2014). Review and analysis of fire resistance tests of timber members in bending, tension and compression with respect to the reduced cross-section method. Fire Safety Journal, 68, 81–99, ISSN 0379-7112. https://doi.org/10.1016/j.firesaf.2014.05.006

    Article  Google Scholar 

  115. Klippel, M., Schmid, J., Frangi, A. (2016). Fire design of CLT, Proceedings of the Joint Conference of COST Actions FP1402 and FP1404, March 10–11, Stockholm, Sweden

    Google Scholar 

  116. Schmid, J., Just, A., Klippel, M., & Fragiacomo, M. (2015). The reduced cross-section method for evaluation of the fire resistance of timber members: Discussion and determination of the zero-strength layer. Fire Tech., 51(6), 1285–1309.

    Article  Google Scholar 

  117. Dhima, D., Audebert, M., & Bouchaïr, A. (2014). Analysis of the Thermo-mechanical behavior of steel-to-timber connections in bending. Journal of Structural Fire Engineering, 5(2), 97–112. https://doi.org/10.1260/2040-2317.5.2.97

    Article  Google Scholar 

  118. Palma, P. (2016). Fire behavior of timber connections. PhD Thesis, ETH Zürich: Dept. of Civil, Environmental and Geomatic Engineering (D-BAUG)

    Google Scholar 

  119. Barber, D. (2017). Glulam connection fire test summary report. Arup USA.

    Google Scholar 

  120. Ronstad, D., Ek, N. (2018). Study of glued-laminated timber connections with high fire resistance using expanded steel tubes. Master Thesis, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Sweden.

    Google Scholar 

  121. Brandon, D., Landel, P., Ziethen, R., Albrektsson, J, Just, A. (2019) High-fire-resistance glulam connections for tall timber buildings. RISE Report, 2019:26. Research Institutes of Sweden. ISBN 978–91–88907-52-3.

    Google Scholar 

  122. Lange, D., Boström, L., Schmid, J., & Albrektsson, J. (2015). The reduced cross section method applied to glulam timber exposed to non-standard fire curves. Fire Technology. https://doi.org/10.1007/s10694-015-0485-y

  123. Lineham, S., Thomson, D., Bartlett, A., Bisby, L., & Hadden, R. (2016). Structural response of fire-exposed cross-laminated timber beams under sustained loads. Fire Safety Journal, 85, 23–34.

    Article  Google Scholar 

  124. Brandon, D., Just, A., Lange, D., & Tiso, M. (2017). Parametric fire design—Zero-strength-layers and charring rates. In R. Görlacher (Ed.), INTER proceedings meeting fifty (Kyoto). INTER / 50–16 – 2. Timber Scientific Publishing, KIT Holzbau und Baukonstruktionen. ISSN 2199-9740. http://holz.vaka.kit.edu/public/inter2017.pdf

    Google Scholar 

  125. Wiesner, F., Bisby, L. A., Bartlett, A. I., Hidalgo, J. P., Santamaria, S., Deeny, S., & Hadden, R. M. (2019). Structural capacity in fire of laminated timber elements in compartments with exposed timber surfaces. Engineering Structures, 179, 284–295. https://doi.org/10.1016/j.engstruct.2018.10.084

  126. Wiesner, F., & Bisby, L. (2019). The structural capacity of laminated timber compression elements in fire: A meta-analysis. Fire Safety Journal, 107, 114–125. https://doi.org/10.1016/j.firesaf.2018.04.009

  127. Lennon, T., Bullock, M. J., Enjily, V. (2000). The fire resistance of medium-rise timber frame buildings. BRE Report No 79485–1, BRE, Watford, UK.

    Google Scholar 

  128. Hakkarainen, T. (2002). Post-flashover fire in light and heavy timber construction compartments. Journal of Fire Sciences, 20(2002), 133–175.

    Article  Google Scholar 

  129. Frangi, A., & Fontana, M. (2005). Fire performance of timber structures under natural fire conditions. Fire safety science symposium 8: 279–290. IAFSS.

    Google Scholar 

  130. Frangi, A., Bochicchio, G., Ceccotti, A., & Lauriola, M. P. (2008). Natural full-scale fire test on a 3 storey XLam timber building, proceedings of the 10th world conference on timber engineering (WCTE), 2nd-5th June 2008. Curran Associates, Inc.

    Google Scholar 

  131. Frangi, A., Bochicchio, G., Ceccotti, A., & Lauriola, M. (2008). Natural full-scale fire test on a 3 storey XLam timber building. Engineered Wood Products Association.

    Google Scholar 

  132. Frangi, A., Erchinger, C., & Fontana, M. (2008). Charring model for timber frame floor assemblies with void cavities. Fire Safety Journal, 43(8), 551–564.

    Article  Google Scholar 

  133. McGregor, C. J. (2013). Contribution of cross-laminated timber panels to room fires. Master thesis. Department of Civil and Environmental Engineering Carleton University. Ottawa-Carleton Institute of Civil and Environmental Engineering, Ottawa, Ontario, Canada.

    Google Scholar 

  134. Li, X., Zhang, X., Hadjisophocleus, G., & McGregor, C. (2014). Experimental study of combustible and non-combustible construction in a natural fire. Fire Technology, 2014.

    Google Scholar 

  135. Medina Hevia, A. R. (2014). Fire resistance of partially protected cross-laminated timber rooms. Master thesis. Department of Civil and Environmental Engineering Carleton University. Ottawa-Carleton Institute of Civil and Environmental Engineering, Ottawa, Ontario, Canada.

    Google Scholar 

  136. Su, J. Z. and Lougheed, G. D. (2014). Report to research consortium for wood and wood hybrid mid-rise buildings—Fire safety summary—Fire research conducted for the project on mid-rise wood construction. National Research Council Canada, Client report: A1–004377.1, Ottawa, Ontario, Canada.

    Google Scholar 

  137. Su, J. Z. and Muradori, S. (2015). Fire demonstration—Cross-laminated timber stair/elevator shaft. National Research Council Canada, Client report: A1–004377.1, Ottawa, Ontario, Canada

    Google Scholar 

  138. Kolaitis, D. I., Asimakopoulou, E. K., & Founti, M. A. (2014). Fire protection of light and massive timber elements using gypsum plasterboards and wood based panels: A large-scale compartment fire test. Construction and Building Materials, 73(2014), 163–170.

    Article  Google Scholar 

  139. Janssens, M. (2015). CLT compartment fire test results. Video presentation. from http://www.awc.org/Code-Officials/2015-IBC-Code-Changes. Retrieved October 26, 2015

  140. Hox, K. (2015). Branntest av massivtre. SPFR-rapport SPFR A15101. SP Fire Research, Trondheim, Norway (unpublished) (in Norwegian)

    Google Scholar 

  141. Janssens. (2017). Development of a fire performance assessment methodology for qualifying cross-laminated timber adhesives. South West Research Institute.

    Google Scholar 

  142. Su, J., Lafrance, P.-S.., Hoehler, M., Bundy, M. (2018). Cross Laminated Timber Compartment Fire Tests for Research on Fire Safety Challenges of Tall Wood Buildings—Phase 2.

    Google Scholar 

  143. Zelinka, S. L., Hasburgh, L. E., Bourne, K. L., Tucholski, D. R., & Oullette, J. P. (2018). Compartment fire testing of a two-story mass timber building. General technical report FPL-GTR-247. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

    Google Scholar 

  144. Su, J., Leroux, P., Lafrance, P.-S., Berzins, R., Gibbs, E., Weinfurter, M. (2018). Fire testing of rooms with exposed wood surfaces in encapsulated mass timber construction. NRC CNRC Report A1–012710.1

    Google Scholar 

  145. Brandon, D. (2018) Fire Safety Challenges of Tall Wood Buildings—Phase 2: Task 4 -Engineering methods. National Fire Protection Association. NFPA report: FPRF-2018-4.

    Google Scholar 

  146. APA – The Engineered Wood Association. (2018). ANSI/APA PRG 320-2018 Standard for performance-rated cross-laminated timber. APA – The Engineered Wood Association, Tacoma, WA.

    Google Scholar 

  147. Frangi, A., Fontana, M., & Mischler, A. (2004). Shear behavior of bond lines in glued laminated timber beams at high temperatures. Wood Science and Technology, 38(2), 119–126. https://doi.org/10.1007/s00226-004-0223-y

    Article  Google Scholar 

  148. Clauβ, S., Gabriel, J., Karbach, A., Matner, M., & Niemz, P. (2011). Influence of the adhesive formulation on the mechanical properties and bonding performance of polyurethane prepolymers. Holzforschung, 65, 835–844.

    Article  Google Scholar 

  149. Emberley, R., Nicolaidis, A., Fernando, D., & Torero, J. L. (2016). Changing failure modes of cross-laminated timber. Structures in Fire, 643–649.

    Google Scholar 

  150. Nicolaidis, A., Emberley, R., Fernando, D., Torero, J. L. (2016). Thermally driven failure mode changes in bonded timber joints. In: Proceedings of the World Conference on Timber Engineering, Vienna, Austria

    Google Scholar 

  151. Butler, C. P. (1971). Notes on charring rates in wood. Fire research note 896. FRS.

    Google Scholar 

  152. Schaffer, E. L. (1967). Charring rate of selected woods- transverse to the grain. US forest service research paper FPL69. Forest products laboratory.

    Google Scholar 

  153. Standards Association of Australia. (1990). Timber structures, part 4: Fire resistance of structural timber members. AS1720.4–1990. SAA.

    Google Scholar 

  154. White, R. H. (1988). Charring rates of different wood species. PhD thesis edn. University of Wisconsin.

    Google Scholar 

  155. International Organization for Standardization. (1999). Fire-resistance tests - elements of building construction—Part 1: General requirements. ISO 834-1:1999. ISO.

    Google Scholar 

  156. Hadvig, S. (1981). Charring of wood in building fires. Research. Report edn. Technical University of Denmark.

    Google Scholar 

  157. Hansen, F. T., & Olesen, F. B. (1992). Full-scale tests on loaded glulam beams exposed to natural fires. Researchreport edn. Aalborg University.

    Google Scholar 

  158. Hopkin, D., Spearpoint, M., Gorksa, C., Krenn, H., Sleik, T., & Milner, M. (2020). Compliance road-map for the structural fire safety design of mass timber buildings in England. SFPE Europe Q4.

    Google Scholar 

  159. Brandon, D., & Dagenais, C. (2018). Fire safety challenges of tall wood buildings – Phase 2: Task 5 – Experimental study of delamination of cross laminated timber (CLT) in fire. Fire Protection Research Foundation, Quincy, MA.

    Google Scholar 

  160. Barber, D., Crielaard, R., Li, X. (2016). Towards fire safe design of exposed timber in tall timber buildings. In Proc. World Conference of Timber Engineering, August 22–25, 2016, Vienna, Austria

    Google Scholar 

  161. Crielaard, R. (2015). Self-extinguishment of cross-laminated timber. Master’s Thesis report, Faculty of Civil Engineering and Geosciences, Delft University of Technology

    Google Scholar 

  162. Friquin, K. L. (2010). “Charring rates of heavy timber structures for fire safety design—A study of the charring rates under various fire exposures and the influencing factors.” PhD Thesis. Trondheim: Norwegian University of Science and Technology.

    Google Scholar 

  163. Brandon, D. (2016). Practical method to determine the contribution of structural timber to the heat release rate and fire temperature of post-flashover compartment fires. Technical Research Institute of Sweden SP, SP Rapport 2016:68, Borås, Sweden.

    Google Scholar 

  164. Franssen, J., & Gernay, T. (2017). Modeling structures in fire with SAFIR®: Theoretical background and capabilities. Journal of Structural Fire Engineering, 8(3), 300–323. https://doi.org/10.1108/JSFE-07-2016-0010

    Article  Google Scholar 

  165. Hopkin, D., Anastasov, S., & Brandon, D. (2017). Reviewing the veracity of a zone-model-based-approach for the assessment of enclosures formed of exposed CLT, in M Gillie, Y Wang Applications of Fire Engineering-proceedings of the International Conference of Applications of Structural Fire Engineering, Manchester, UK, pp. 151–160.

    Google Scholar 

  166. Zhang, C., & Li, G., (2013). Modified one zone model for fire resistance design of steel structures. Advanced Steel Construction 9, 282–297. https://doi.org/10.18057/IJASC.2013.9.4.2

  167. Maluk, C. (2014). Development and application of a novel test method for studying the fire behaviour of cfrp prestressed concrete structural elements. Thesis, University of Edin-burgh Press, UK.

    Google Scholar 

  168. Wade, C., Spearpoint, M., Fleischmann, C., Baker, G. and Abu, A. 2018. “Predicting the fire dynamics of exposed timber surfaces in compartments using a two-zone model.” Fire Technology 54, no. 4. p893–920. doi:https://doi.org/10.1007/s10694-018-0714-2.

  169. Wade, C (2019). A theoretical model of fully developed fire in mass timber enclosures. PhD Thesis, University of Canterbury, Department of Civil and Natural Resources Engineering

    Google Scholar 

  170. Frangi, A., & König, J. (2011). Effect of increased charring on the narrow side of rectangular timber cross-sections exposed to fire on three or four sides. Fire and Materials, 35(8), 593–605.

    Article  Google Scholar 

  171. Harmathy, T. Z. (1965). Ten rules of fire endurance rating. Fire Technology, 1(2), 93–102.

    Article  Google Scholar 

  172. Östman, B., Mikkola, E., Stein, R., Frangi, A., König, J., Dhima, D., Hakkarainen, T., & Bregulla, J. (2010). Fire safety in timber buildings- technical guideline for Europe. SPReport 2010:19. SP Trätek.

    Google Scholar 

  173. American Wood Council. (2018). National design specification (NDS) for wood construction with commentary.

    Google Scholar 

  174. AWC (2018). Calculating the fire resistance of wood members and assemblies. Technical Report No.10. American Wood Council, Leesburg, VA, USA

    Google Scholar 

  175. Standards New Zealand. (1993). Code of practice for timber design. NZS 3603:1993. SNZ.

    Google Scholar 

  176. Schmid, J., König, J., & Kohler, J. (2010). Design model for fire exposed cross-laminated timber. In V. R. Kodur & J. M. Franssen (Eds.), Proceedings of the sixth international conference on structures in fire, 2nd-4th June 2010 (pp. 511–519). DEStech.

    Google Scholar 

  177. British Standards Institution. (2002). Eurocode 1: Actions on structures – Part 1–2: General actions – Actions on structures exposed to fire. BS EN 1991-1-2. BSI.

    Google Scholar 

  178. Magnusson, S. E., & Thelandersson, S. (1970). Temperature—Time curves of complete process of fire development. Bulletin of division of structural mechanics and concrete construction (Vol. 16). Lund University of Technology.

    Google Scholar 

  179. Buchanan, A. H. (1990). Bending strength of lumber. Journal of Structural Engineering, 116(5), 1213–1229.

    Article  Google Scholar 

  180. European Committee for Standardization. (2004). Eurocode 5: Design of timber structures—Part 1-1: General – Common rules and rules for buildings. EN 1995-1-1. CEN.

    Google Scholar 

  181. Tiso, M., Just, A., Schmid, J., & Klippel, M. (2018). Effective cross‐sectional method for timber frame assemblies—definition of coefficients and zero‐strength layers. Fire and Materials, 42(8), 897–913.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Hopkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brandon, D., Hopkin, D., Emberley, R., Wade, C. (2021). Timber Structures. In: LaMalva, K., Hopkin, D. (eds) International Handbook of Structural Fire Engineering. The Society of Fire Protection Engineers Series. Springer, Cham. https://doi.org/10.1007/978-3-030-77123-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77123-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77122-5

  • Online ISBN: 978-3-030-77123-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics