Skip to main content

What to Measure: Testosterone or Free Testosterone?

  • Chapter
  • First Online:
Controversies in Testosterone Deficiency

Abstract

Accurate and precise measurement of serum testosterone is adequate for the diagnosis and monitoring of testosterone replacement for most men with testosterone deficiency. Serum testosterone measurement should be obtained in the morning, preferably in fasting state, and a repeat sample for confirmation is advisable. The sample should be sent to a reliable laboratory that practices accuracy-based proficiency tests or external quality control programs and quotes a reference range of serum testosterone levels of adult men between 250 and 1000 ng/dL (8.7–34.7 nmol/L). The use of free testosterone measurements as a primary diagnostic tool for male hypogonadism has remained controversial. Free testosterone measurements may provide additional information if there are issues with the concentration or the binding of testosterone to sex hormone binding globulin (SHBG). Free testosterone should be measured by equilibrium dialysis which is available in reference laboratories or by calculated free testosterone using formulae that had been validated based on accurate and precise measurements of both testosterone and SHBG. The most common clinical use of free testosterone is for the diagnosis of older men with testosterone deficiency who may be overweight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Uncategorized References

  1. Heinemann LAJ, Zimmermann T, Vermeulen A, et al. A new “aging males” symptoms’ rating scale. Aging Male. 1999;2:105–14.

    Article  Google Scholar 

  2. Morley JE, Charlton E, Patrick P, et al. Validation of a screening questionnaire for androgen deficiency in aging males. Metabolism. 2000;49(9):1239–42.

    Article  CAS  PubMed  Google Scholar 

  3. Smith KW, Feldman HA, McKinlay JB. Construction and field validation of a self-administered screener for testosterone deficiency (hypogonadism) in ageing men. Clin Endocrinol. 2000;53(6):703–11.

    Article  CAS  Google Scholar 

  4. Rosen RC, Araujo AB, Connor MK, et al. Assessing symptoms of hypogonadism by self-administered questionnaire: qualitative findings in patients and controls. Aging Male. 2009;12(2–3):77–85.

    Article  PubMed  Google Scholar 

  5. Rosen RC, Araujo AB, Connor MK, et al. The NERI Hypogonadism Screener: psychometric validation in male patients and controls. Clin Endocrinol. 2011;74(2):248–56.

    Article  Google Scholar 

  6. Heinemann LA, Saad F, Heinemann K, et al. Can results of the Aging Males’ Symptoms (AMS) scale predict those of screening scales for androgen deficiency? Aging Male. 2004;7(3):211–8.

    Article  CAS  PubMed  Google Scholar 

  7. Bhasin S, Brito JP, Cunningham GR, et al. Testosterone therapy in men with hypogonadism: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2018;103(5):1715–44.

    Article  PubMed  Google Scholar 

  8. Matsumoto AM, Bremner WJ. Serum testosterone assays – accuracy matters. J Clin Endocrinol Metab. 2004;89(2):520–4.

    Article  CAS  PubMed  Google Scholar 

  9. Corona G, Monami M, Rastrelli G, et al. Type 2 diabetes mellitus and testosterone: a meta-analysis study. Int J Androl. 2010;34:528–40.

    Article  PubMed  CAS  Google Scholar 

  10. Araujo AB, O’Donnell AB, Brambilla DJ, et al. Prevalence and incidence of androgen deficiency in middle-aged and older men: estimates from the Massachusetts Male Aging Study. J Clin Endocrinol Metab. 2004;89(12):5920–6.

    Article  CAS  PubMed  Google Scholar 

  11. Harman SM, Metter EJ, Tobin JD, et al. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab. 2001;86(2):724–31.

    Article  CAS  PubMed  Google Scholar 

  12. Wu FC, Tajar A, Beynon JM, et al. Identification of late-onset hypogonadism in middle-aged and elderly men. N Engl J Med. 2010;363(2):123–35.

    Article  CAS  PubMed  Google Scholar 

  13. Bercea RM, Mihaescu T, Cojocaru C, et al. Fatigue and serum testosterone in obstructive sleep apnea patients. Clin Respir J. 2015;9(3):342–9.

    Article  CAS  PubMed  Google Scholar 

  14. Clarke BM, Vincent AD, Martin S, et al. Obstructive sleep apnea is not an independent determinant of testosterone in men. Eur J Endocrinol. 2020;183(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wang C, Catlin DH, Demers LM, et al. Measurement of total serum testosterone in adult men: comparison of current laboratory methods versus liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab. 2004;89(2):534–43.

    Article  CAS  PubMed  Google Scholar 

  16. Taieb J, Mathian B, Millot F, et al. Testosterone measured by 10 immunoassays and by isotope-dilution gas chromatography-mass spectrometry in sera from 116 men, women, and children. Clin Chem. 2003;49(8):1381–95.

    Article  CAS  PubMed  Google Scholar 

  17. Sikaris K, McLachlan RI, Kazlauskas R, et al. Reproductive hormone reference intervals for healthy fertile young men: evaluation of automated platform assays. J Clin Endocrinol Metab. 2005;90(11):5928–36.

    Article  CAS  PubMed  Google Scholar 

  18. Rosner W, Auchus RJ, Azziz R, et al. Position statement: utility, limitations, and pitfalls in measuring testosterone: an Endocrine Society position statement. J Clin Endocrinol Metab. 2007;92(2):405–13.

    Article  CAS  PubMed  Google Scholar 

  19. Rosner W, Vesper H. Preface. CDC workshop report improving steroid hormone measurements in patient care and research translation. Steroids. 2008;73(13):1285.

    Article  CAS  PubMed  Google Scholar 

  20. Rosner W, Vesper H. Toward excellence in testosterone testing: a consensus statement. J Clin Endocrinol Metab. 2010;95(10):4542–8.

    Article  CAS  PubMed  Google Scholar 

  21. Vesper HW, Bhasin S, Wang C, et al. Interlaboratory comparison study of serum total testosterone measurements performed by mass spectrometry methods. Steroids. 2009;74(6):498–503.

    Article  CAS  PubMed  Google Scholar 

  22. Vesper HW, Botelho JC. Standardization of testosterone measurements in humans. J Steroid Biochem Mol Biol. 2010;121(3–5):513–9.

    Article  CAS  PubMed  Google Scholar 

  23. Vesper HW, Botelho JC, Shacklady C, et al. CDC project on standardizing steroid hormone measurements. Steroids. 2008;73(13):1286–92.

    Article  CAS  PubMed  Google Scholar 

  24. Cao ZT, Botelho JC, Rej R, et al. Accuracy-based proficiency testing for testosterone measurements with immunoassays and liquid chromatography-mass spectrometry. Clin Chim Acta. 2017;469:31–6.

    Article  CAS  PubMed  Google Scholar 

  25. Cao ZT, Botelho JC, Rej R, et al. Impact of testosterone assay standardization efforts assessed via accuracy-based proficiency testing. Clin Biochem. 2019;68:37–43.

    Article  CAS  PubMed  Google Scholar 

  26. Griffin PD, Wilson JD. Disorders of the testis. In: Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jamieson JL, editors. Harrison’s principles of internal medicine. 15th ed. New York: MaGraw Hill; 2001. p. 2143–54.

    Google Scholar 

  27. Travison TG, Vesper HW, Orwoll E, et al. Harmonized reference ranges for circulating testosterone levels in men of four cohort studies in the United States and Europe. J Clin Endocrinol Metab. 2017;102(4):1161–73.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Orwoll ES, Nielson CM, Labrie F, et al. Evidence for geographical and racial variation in serum sex steroid levels in older men. J Clin Endocrinol Metab. 2010;95(10):E151–E60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vesper HW, Wang Y, Vidal M, et al. Serum total testosterone concentrations in the US household population from the NHANES 2011–2012 study population. Clin Chem. 2015;61(12):1495–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Litman HJ, Bhasin S, Link CL, et al. Serum androgen levels in black, Hispanic, and white men. J Clin Endocrinol Metab. 2006;91(11):4326–34.

    Article  CAS  PubMed  Google Scholar 

  31. Diver MJ, Imtiaz KE, Ahmad AM, et al. Diurnal rhythms of serum total, free and bioavailable testosterone and of SHBG in middle-aged men compared with those in young men. Clin Endocrinol. 2003;58(6):710–7.

    Article  CAS  Google Scholar 

  32. Bremner WJ, Vitiello MV, Prinz PN. Loss of circadian rhythmicity in blood testosterone levels with aging in normal men. J Clin Endocrinol Metab. 1983;56(6):1278–81.

    Article  CAS  PubMed  Google Scholar 

  33. Caronia LM, Dwyer AA, Hayden D, et al. Abrupt decrease in serum testosterone levels after an oral glucose load in men: implications for screening for hypogonadism. Clin Endocrinol. 2013;78(2):291–6.

    Article  CAS  Google Scholar 

  34. Ceponis J, Swerdloff R, Leung A, et al. Accurate measurement of androgen after androgen esters: problems created by ex vivo esterase effects and LC-MS/MS interference. Andrology. 2019;7(1):42–52.

    Article  CAS  PubMed  Google Scholar 

  35. Swerdloff RS, Wang C, White WB, et al. A new oral testosterone undecanoate formulation restores testosterone to normal concentrations in hypogonadal men. J Clin Endocrinol Metab. 2020;105(8):2515–31.

    Article  PubMed Central  Google Scholar 

  36. Pardridge WM. Serum bioavailability of sex steroid hormones. Clin Endocrinol Metab. 1986;15(2):259–78.

    Article  CAS  PubMed  Google Scholar 

  37. Iqbal MJ, Johnson MW. Purification and characterization of human sex hormone binding globulin. J Steroid Biochem. 1979;10(5):535–40.

    Article  CAS  PubMed  Google Scholar 

  38. Rosner W, Smith RN. Isolation and characterization of the testosterone-estradiol-binding globulin from human plasma. Use of a novel affinity column. Biochemistry (Mosc). 1975;14(22):4813–20.

    Article  CAS  Google Scholar 

  39. Selby C. Sex hormone binding globulin: origin, function and clinical significance. Ann Clin Biochem. 1990;27(Pt 6):532–41.

    Article  PubMed  Google Scholar 

  40. Goldman AL, Bhasin S, Wu FCW, et al. A reappraisal of testosterone’s binding in circulation: physiological and clinical implications. Endocr Rev. 2017;38(4):302–24.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vermeulen A, Stoica T, Verdonck L. The apparent free testosterone concentration, an index of androgenicity. J Clin Endocrinol Metab. 1971;33(5):759–67.

    Article  CAS  PubMed  Google Scholar 

  42. Kley HK, Bartmann E, Krüskemper HL. A simple and rapid method to measure non-protein-bound fractions of cortisol, testosterone and oestradiol by equilibrium dialysis: comparison with centrifugal filtration. Acta Endocrinol. 1977;85(1):209–19.

    CAS  Google Scholar 

  43. Glass AR, Swerdloff RS, Bray GA, et al. Low serum testosterone and sex-hormone-binding-globulin in massively obese men. J Clin Endocrinol Metab. 1977;45(6):1211–9.

    Article  CAS  PubMed  Google Scholar 

  44. Keevil BG, Adaway J. Assessment of free testosterone concentration. J Steroid Biochem Mol Biol. 2019;190:207–11.

    Article  CAS  PubMed  Google Scholar 

  45. Hammond GL, Nisker JA, Jones LA, et al. Estimation of the percentage of free steroid in undiluted serum by centrifugal ultrafiltration-dialysis. J Biol Chem. 1980;255(11):5023–6.

    Article  CAS  PubMed  Google Scholar 

  46. Chen Y, Yazdanpanah M, Wang XY, et al. Direct measurement of serum free testosterone by ultrafiltration followed by liquid chromatography tandem mass spectrometry. Clin Biochem. 2010;43(4–5):490–6.

    Article  CAS  PubMed  Google Scholar 

  47. Van Uytfanghe K, Stöckl D, Kaufman JM, et al. Validation of 5 routine assays for serum free testosterone with a candidate reference measurement procedure based on ultrafiltration and isotope dilution-gas chromatography-mass spectrometry. Clin Biochem. 2005;38(3):253–61.

    Article  PubMed  CAS  Google Scholar 

  48. Manni A, Pardridge WM, Cefalu W, et al. Bioavailability of albumin-bound testosterone. J Clin Endocrinol Metab. 1985;61(4):705–10.

    Article  CAS  PubMed  Google Scholar 

  49. Giton F, Guéchot J, Fiet J. Comparative determinations of non SHBG-bound serum testosterone, using ammonium sulfate precipitation, Concanavalin A binding or calculation in men. Steroids. 2012;77(12):1306–11.

    Article  CAS  PubMed  Google Scholar 

  50. Fabbri E, An Y, Gonzalez-Freire M, et al. Bioavailable testosterone linearly declines over a wide age spectrum in men and women from the Baltimore Longitudinal Study of Aging. J Gerontol A Biol Sci Med Sci. 2016;71(9):1202–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gheorghiu I, Moshyk A, Lepage R, et al. When is bioavailable testosterone a redundant test in the diagnosis of hypogonadism in men? Clin Biochem. 2005;38(9):813–8.

    Article  CAS  PubMed  Google Scholar 

  52. Wang C, Plymate S, Nieschlag E, et al. Salivary testosterone in men: further evidence of a direct correlation with free serum testosterone. J Clin Endocrinol Metab. 1981;53(5):1021–4.

    Article  CAS  PubMed  Google Scholar 

  53. Fiers T, Kaufman JM. Management of hypogonadism: is there a role for salivary testosterone. Endocrine. 2015;50(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  54. Büttler RM, Peper JS, Crone EA, et al. Reference values for salivary testosterone in adolescent boys and girls determined using Isotope-Dilution Liquid-Chromatography Tandem Mass Spectrometry (ID-LC-MS/MS). Clin Chim Acta. 2016;456:15–8.

    Article  PubMed  CAS  Google Scholar 

  55. Granger DA, Shirtcliff EA, Booth A, et al. The “trouble” with salivary testosterone. Psychoneuroendocrinology. 2004;29(10):1229–40.

    Article  CAS  PubMed  Google Scholar 

  56. Contreras M, Raisingani M, Chandler DW, et al. Salivary testosterone during the minipuberty of infancy. Horm Res Paediatr. 2017;87(2):111–5.

    Article  CAS  PubMed  Google Scholar 

  57. de Arruda AFS, Aoki MS, Drago G, et al. Salivary testosterone concentration, anxiety, perceived performance and ratings of perceived exertion in basketball players during semi-final and final matches. Physiol Behav. 2019;198:102–7.

    Article  PubMed  CAS  Google Scholar 

  58. Hayes LD, Sculthorpe N, Cunniffe B, et al. Salivary testosterone and cortisol measurement in sports medicine: a narrative review and user’s guide for researchers and practitioners. Int J Sports Med. 2016;37(13):1007–18.

    Article  CAS  PubMed  Google Scholar 

  59. Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab. 1999;84(10):3666–72.

    Article  CAS  PubMed  Google Scholar 

  60. Sodergard R, Backstrom T, Shanbhag V, et al. Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. J Steroid Biochem. 1982;16(6):801–10.

    Article  CAS  PubMed  Google Scholar 

  61. Mazer NA. A novel spreadsheet method for calculating the free serum concentrations of testosterone, dihydrotestosterone, estradiol, estrone and cortisol: with illustrative examples from male and female populations. Steroids. 2009;74(6):512–9.

    Article  CAS  PubMed  Google Scholar 

  62. Nanjee MN, Wheeler MJ. Plasma free testosterone--is an index sufficient? Ann Clin Biochem. 1985;22(Pt 4):387–90.

    Article  PubMed  Google Scholar 

  63. Ly LP, Sartorius G, Hull L, et al. Accuracy of calculated free testosterone formulae in men. Clin Endocrinol. 2010;73:382–8.

    Article  CAS  Google Scholar 

  64. Sartorius G, Ly LP, Sikaris K, et al. Predictive accuracy and sources of variability in calculated free testosterone estimates. Ann Clin Biochem. 2009;46(Pt 2):137–43.

    Article  CAS  PubMed  Google Scholar 

  65. Zakharov MN, Bhasin S, Travison TG, et al. A multi-step, dynamic allosteric model of testosterone’s binding to sex hormone binding globulin. Mol Cell Endocrinol. 2015;399:190–200.

    Article  CAS  PubMed  Google Scholar 

  66. Winters SJ, Kelley DE, Goodpaster B. The analog free testosterone assay: are the results in men clinically useful? Clin Chem. 1998;44(10):2178–82.

    Article  CAS  PubMed  Google Scholar 

  67. Fritz KS, McKean AJ, Nelson JC, et al. Analog-based free testosterone test results linked to total testosterone concentrations, not free testosterone concentrations. Clin Chem. 2008;54(3):512–6.

    Article  CAS  PubMed  Google Scholar 

  68. Rosner W. An extraordinarily inaccurate assay for free testosterone is still with us. J Clin Endocrinol Metab. 2001;86(6):2903.

    Article  CAS  PubMed  Google Scholar 

  69. Kacker R, Hornstein A, Morgentaler A. Free testosterone by direct and calculated measurement versus equilibrium dialysis in a clinical population. Aging Male. 2013;16(4):164–8.

    Article  CAS  PubMed  Google Scholar 

  70. Antonio L, Wu FC, O’Neill TW, et al. Low free testosterone is associated with hypogonadal signs and symptoms in men with normal total testosterone. J Clin Endocrinol Metab. 2016;101(7):2647–57.

    Article  CAS  PubMed  Google Scholar 

  71. Rastrelli G, O’Neill TW, Ahern T, et al. Symptomatic androgen deficiency develops only when both total and free testosterone decline in obese men who may have incident biochemical secondary hypogonadism: prospective results from the EMAS. Clin Endocrinol. 2018;89(4):459–69.

    Article  CAS  Google Scholar 

  72. Cunningham GR, Stephens-Shields AJ, Rosen RC, et al. Association of sex hormones with sexual function, vitality, and physical function of symptomatic older men with low testosterone levels at baseline in the testosterone trials. J Clin Endocrinol Metab. 2015;100(3):1146–55.

    Article  CAS  PubMed  Google Scholar 

  73. Cunningham GR, Stephens-Shields AJ, Rosen RC, et al. Testosterone treatment and sexual function in older men with low testosterone levels. J Clin Endocrinol Metab. 2016;101(8):3096–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, C., Swerdloff, R. (2021). What to Measure: Testosterone or Free Testosterone?. In: Mulhall, J.P., Maggi, M., Trost, L. (eds) Controversies in Testosterone Deficiency . Springer, Cham. https://doi.org/10.1007/978-3-030-77111-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77111-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77110-2

  • Online ISBN: 978-3-030-77111-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics