Skip to main content

Educational Robotics: School to University, Examples of Interconnected Longitudinal Individual Student Routes

  • Conference paper
  • First Online:
Education in & with Robotics to Foster 21st-Century Skills (EDUROBOTICS 2021)

Abstract

This paper presents several examples of students’ (12–17 y.o.) results of successful long-term iterative educational process in digital fabrication laboratory environment united by the idea of building original robotic solutions to annually changing competition tasks. Presented examples demonstrate that within educational robotics domain finding long-term uniting ideas to bring education to the next level of implementation is possible and relatively easy. Being a complex multidisciplinary subject, educational robotics has big potential to play one of the important roles in the ongoing transformations in school.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lammer, L., Vincze, M., Kandlhofer, M., Steinbauer, G.: The educational robotics landscape exploring common ground and contact points. In: Merdan, M., Lepuschitz, W., Koppensteiner, G., Balogh, R. (eds.) Advances in Intelligent Systems and Computing, vol. 457, pp. 105–111. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42975-5_10

  2. Johnson, W.C., Jones, R.C.: Declining interest in engineering studies at a time of increased business need. accreditation board for engineering and technology, pp. 243-252 (2006)

    Google Scholar 

  3. Morales, L.-M., Maillet, K.: E-learning consequences of the declining interest in engineering studies in Europe. In: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (2009)

    Google Scholar 

  4. Kim, S.: New research shows declining interest in STEM (2018). https://www.govtech.com/education/k-12/New-Research-Shows-Declining-Interest-in-STEM.html. Accessed 30 Oct 2020

  5. Education and Skills 2.0: New Targets and Innovative Approaches, WEF (2014). http://www3.weforum.org/docs/GAC/2014/WEF_GAC_EducationSkills_TargetsInnovativeApproaches_Book_2014.pdf. Accessed 30 Oct 2020

  6. Altin, H., Pedaste, M.: Learning approaches to applying robotics in science education. J. Baltic Sci. Educ. 12(3), 365–377 (2013)

    Google Scholar 

  7. Bredenfeld, A., Hofmann, A., Steinbauer, G.: Robotics in education initiatives in Europe - status, shortcomings and open questions. In: Proceedings of SIMPAR 2010 Workshops, pp. 568-574 (2010). ISBN: 978-3-00-032863-3

    Google Scholar 

  8. Alimisis, D.: Educational robotics: open questions and new challenges. Themes Sci. Technol. Educ. 6(1), 63–71 (2013)

    Google Scholar 

  9. Lammer, L., Lepuschitz, W., Kynigos, C., Giuliano, A., Girvan, C.: ER4STEM educational robotics for science, technology, engineering and mathematics. In: Merdan, M., Lepuschitz, W., Koppensteiner, G., Balogh, R. (eds) Robotics in Education. Advances in Intelligent Systems and Computing, vol. 457, pp. 95–101 (2017). https://doi.org/10.1007/978-3-319-42975-5_9

  10. Artificial Intelligence in Education: Challenges and Opportunities for Sustainable Development. United Nations Educational, Scientific and Cultural Organization. (2019). https://unesdoc.unesco.org/ark:/48223/pf0000366994. Accessed 30 Oct 2020

  11. Robinson, K.: Changing Education Paradigms (2010). https://youtu.be/zDZFcDGpL4U. Accessed 31 Jan 2021

  12. Jäggle, G., Vincze, M., et al.: iBridge - Participative Cross-Generational Approach with Educational Robotics. In: Lepuschitz, W., Merdan, M., Koppensteiner, G., Balogh, R., Obdržálek, D. (eds) Robotics in Education. Advances in Intelligent Systems and Computing, vol. 829, pp. 263–274 (2019). https://doi.org/10.1007/978-3-319-97085-1_26

  13. Jäggle, G., Merdan, M., Koppensteiner, G., Brein, C., Wallisch, B., Marakovits, P., Brunn, M., Lepuschitz, W., Vincze, M.: Project-based learning focused on cross-generational challenges. In: Merdan, M., Lepuschitz, W., Koppensteiner, G., Balogh, R., Obdržálek, D. (eds.) Robotics in Education. Advances in Intelligent Systems and Computing, vol. 1023 (2020). https://doi.org/10.1007/978-3-030-26945-6_14

  14. Yudin, A., Sukhotskiy, D., Salmina, M.: Practical mechatronics: training for mobile robot competition. In: 6th International Conference on Robotics in Education, RiE 2015, pp. 94–99 (2016). ISBN: 978-2-9700629-5-0

    Google Scholar 

  15. Yudin, A., Salmina, M., Sukhotskiy, V., Dessimoz, J.-D.: Mechatronics practice in education step by step, workshop on mobile robotics. In: 47th International Symposium on Robotics, ISR 2016, pp. 590–597 (2016)

    Google Scholar 

  16. Yudin, A., Vozhdaev, A., Sukhotskiy, D., Salmina, M., Sukhotskaya, T., Sukhotskiy, V.: Intensive robotics education approach in the form of a summer camp. In: Alimisis, D., Moro, M., Menegatti, E. (eds.) Educational Robotics in the Makers Era. Advances in Intelligent Systems and Computing, vol. 560. Springer, Cham, pp. 246–250 (2017)

    Google Scholar 

  17. Yudin, A., Vlasov, A., et al.: Challenging intensive project-based education: short-term class on mobile robotics with mechatronic elements. In: Lepuschitz, W., Merdan, M., Koppensteiner, G., Balogh, R., Obdržálek, D. (eds.) Robotics in Education. Advances in Intelligent Systems and Computing, vol. 829, pp. 79–84 (2019). https://doi.org/10.1007/978-3-319-97085-1_8

  18. Open-source Smalltalk programming system. https://squeak.org. Accessed 30 Oct 2020

  19. A pure object-oriented programming language and a powerful environment. https://pharo.org. Accessed 30 Oct 2020

  20. Adamsky, A.: Key institutions and characteristics of the new school, keynote speech (2020). https://www.facebook.com/instituteeureka/videos/1218651705148628/. Accessed 30 Oct 2020. (in Russian language, speaker’s presentation at 5:33

  21. Bezrukikh, M.: Distance learning experience. Analysis of the organization of the educational process. Research results. Institute of Developmental Physiology, Russian Academy of Education (2020). https://drive.google.com/file/d/14Cj2-805yzEzjxMZH-H4MOv5mDlIgkQj/view. Accessed 30 Oct 2020. (in Russian language)

  22. Jäggle, G., Lammer, L., Hieber, H., Vincze, M.: Technological literacy through outreach with educational robotics. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) Advances in Artificial Life. Darwin Meets von Neumann. Advances in Intelligent Systems and Computing, vol. 1023, pp. 114–125 (2020). https://doi.org/10.1007/978-3-030-26945-6_11

  23. Yudin, A., Vlasov, A., Salmina, M., Shalashova, M.: Evolution of educational robotics in supplementary education of children. In: Merdan, M., Lepuschitz, W., Koppensteiner, G., Balogh, R., Obdržálek D. (eds.) Robotics in Education. Advances in Intelligent Systems and Computing, vol. 1023, pp. 336–343 (2020). https://doi.org/10.1007/978-3-030-26945-6_30

  24. Yudin, A., Vlasov, A. Perspectives of Educational Robotics in the Ongoing Technological Transformations (to be published)

    Google Scholar 

  25. Eurobot: International Students Robotic Contest. https://www.eurobot.org. Accessed 09 Mar 2020

  26. Yudin, A., Kolesnikov, M., Vlasov, A., Salmina, M.: Project oriented approach in educational robotics: from robotic competition to practical appliance. In: Merdan, M., Lepuschitz, W., Koppensteiner, G., Balogh, R. (eds.) Advances in Intelligent Systems and Computing, vol. 457, pp. 83–94. Springer, Cham (2017)

    Google Scholar 

  27. Yudin, A., Semyonov, M.: Distributed control system for a mobile robot: tasks and software architecture. In: Communications in Computer and Information Science, vol. 161, pp. 321–334. Springer, Heidelberg (2011)

    Google Scholar 

  28. Demidov, A., Kuturov, A., Yudin, A., Krasnobryzhiy, B., Chistyakov, M., Borovik, R.: Autonomous mobile robot development in a team, summarizing our approaches. In: Obdržálek, D., Gottscheber, A. (eds.) Communications in Computer and Information Science, vol. 156, pp. 168–179. Springer, Heidelberg (2011)

    Google Scholar 

  29. Kuturov, A., Yudin, A., Pashinskiy, I., Chistyakov, M.: Team development of an autonomous mobile robot: approaches and results. In: Obdržálek, D., Gottscheber, A. (eds.) Communications in Computer and Information Science, vol. 161, pp. 187–201. Springer, Heidelberg (2011)

    Google Scholar 

  30. Educational Robotics Augmented Channel. https://www.youtube.com/channel/UCURM98qJYQhx8saQs8gx4lA. Accessed 01 Jan 2021

Download references

Acknowledgements

Some results were obtained in the framework of the State task #0705-2020-0041"Component’s digital transformation methods’ fundamental research for micro- and nanosystems".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Yudin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yudin, A., Vlasov, A., Zatekin, D., Lapshinov, S. (2021). Educational Robotics: School to University, Examples of Interconnected Longitudinal Individual Student Routes. In: Malvezzi, M., Alimisis, D., Moro, M. (eds) Education in & with Robotics to Foster 21st-Century Skills. EDUROBOTICS 2021. Studies in Computational Intelligence, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-030-77022-8_18

Download citation

Publish with us

Policies and ethics