Skip to main content

Texture Based Supervised Learning for Crater-Like Structures Recognition Using ALOS/PALSAR Images

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2021)

Abstract

Meteorite impacts participated in the formation of the Solar System and continue to modify the planetary surfaces, originating a structure present in all of them, the craters. Terrestrial craters are abundant, geological and biological significant structures and are related to large mineral ores. The Earth impact record continues to be deciphered, currently 190 terrestrial impact structures have been confirmed, and it is estimated that several hundred remain to be discovered. One of the techniques to detect a crater candidate site is Remote Sensing, however it is a difficult task, due to the large information that must be processed, the lack of discriminant features for crater and non-crater regions and appropriated methods to recognize them. We propose an approach to identify meteorite impact structures, based on textural features of ALOS/PALSAR grayscale radar images, using supervised automatic learning. For this, the quotient of HV and HH polarimetric bands of these images was calculated. The resulting images were segmented by global thresholding to generate two sets of training samples: structure type and regions type of craters and non-craters, with them different kinds of classifiers (Bayesian, Fuzzy, Genetics, Bagging, and Boost) were trained, getting accuracy between 81 to 99% for craters identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. KrØgli, S.O., Dypvik, H., Etzelmüller, B.: Automatic detection of circular depressions in digital elevation data in the search for potential Norweigian impact structures. Norwegian J. Geol./Norsk Geologisk Forening 87, 157–166 (2007)

    Google Scholar 

  2. de Alburquerque Aráujo, A., Hadad, R., Pereira Martins, P.J.: Identification of patterns in satellite imagery: circular forms. In: Dougherty, E.R., Astola, J.T., (eds.) Nonlinear Image Processing and Pattern Analysis XII, vol. 4304, pp. 25–35. SPIE-International Society for Optical Engine (2001). https://doi.org/10.1117/12.424989

  3. Portugal, R.S., de Souza Filho, C.R.: Automatic crater detection using DEM and circular coherency analysis - a case study on South American craters. In: 67th Annual Meteoritical Society Meeting on Proceedings, Rio de Janeiro, Brazil, no. 5096 (2004)

    Google Scholar 

  4. Bruzzone, L., Lizzi, L., Marchetti, P.G., Earl, J., Milnes, M.: Recognition and detection of impact craters from EO products. In: Proceedings of the Conference “ESA-EUSC 2004”, ESA Publications Division, Madrid, Spain (2004)

    Google Scholar 

  5. Earl, J., Chicarro, A., Koeberl, C., Marchetti, P.G., Milnes, M.: Automatic recognition of crater-like structures in terrestrial and planetary images. In: 36th Annual Lunar and Planetary Science Conference, League City, Texas, USA, p. 1319 (2005)

    Google Scholar 

  6. Liu, S., Ding, W., Gao, F., Stepinski, T.F.: Adaptive selective learning for automatic identification of sub-kilometer craters. Neurocomputing 92, 78–87 (2012)

    Article  Google Scholar 

  7. Earth Impact Database. https://www.passc.net/EarthImpactDatabase, Accessed 1 Jan 2018.

  8. The collapse caldera worldwide database. https://www.gvb-csic.es/CCDB/, Accessed 1 Jan 2018

  9. Smithsonian Institution-Global Volcanism Program. https://volcano.si.edu/, Accessed Jan 2018

  10. Volcano Table-Volcano World-Oregon State University. https://volcano.oregonstate.edu/volcano_table, Accessed 1 Jan 2018

  11. Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest/Non-Forest map. https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm, Accessed 1 Dec 2017

  12. Simental, E., Guthrie, V., Blundell, S.B.: Polarimetry band ratios, decompositions, and statistics for terrain characterization. In: Global Priorities in Land Remote Sensing on Proceedings of the Pecora, vol. 16, pp. 23–27. American Society for Photogrammetry and Remote Sensing, Sioux Falls (2005)

    Google Scholar 

  13. MVTec Halcon 10.0, version 2014; MVTec software GmbH. https://www.mvtec.com

  14. van Gasselt, S., Kim, J., Choi, Yun-Soo., Kim, J.: The Oasis impact structure, Libya: geological characteristics from ALOS PALSAR-2 data interpretation. Earth Planets Space 69(1), 1–12 (2017). https://doi.org/10.1186/s40623-017-0620-8

    Article  Google Scholar 

  15. Thapa, R.B., Watanabe, M., Motohka, T., Shimada, M.: Potential of high-resolution ALOS–PALSAR mosaic texture for aboveground forest carbon tracking in tropical region. Remote Sens. Environ. 160, 122–133 (2015)

    Article  Google Scholar 

  16. Rakwatin, P., Longépé, N., Isoguchi, O., Shimada, M., Uryu, Y., Takeuchi, W.: Using multiscale texture information from ALOS PALSAR to map tropical forest. Int. J. Remote Sens. 33(24), 7727–7746 (2012)

    Article  Google Scholar 

  17. Singh, M., Kaur, G.: SAR image classification using PCA and texture analysis. In: International Conference on Advances in Information Technology and Mobile Communication Proceedings, pp. 435–439. Springer, Heidelberg (2011)

    Google Scholar 

  18. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Saitta, L., Kaufmann, M. (eds.) 13th International Conference on Machine Learning, vol. 96, pp. 148–156 (1996)

    Google Scholar 

  19. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  20. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991)

    Google Scholar 

  21. Jensen, R., Cornelis, C.: A new approach to fuzzy-rough nearest neighbor classification. In: Chan, C.C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) 6th International Conference, RSCTC, pp. 310–319. Springer, New York (2008)

    Google Scholar 

  22. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, New York (1992)

    MATH  Google Scholar 

  23. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and Its Applications. Morgan Kaufmann Publishers Inc., San Francisco (1998)

    MATH  Google Scholar 

  24. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Besnard, P., Hanks, S. (eds.) Uncertainty in Artificial intelligence 1995, pp. 338–345 (1995)

    Google Scholar 

  25. Waikato Environment for Knowledge Analysis (WEKA), Version 3.6.12: The University of Waikato, Machine Learning Group at the University of Waikato (2014). https://www.cs.waikato.ac.nz/ml/weka/downloading.html

  26. Abate, B., Koeberl, C., Kruger, F.J., Underwood Jr., J.R.: BP and oasis impact structures, libya, and their relation to libyan desert glass. In Dressler, B.C., Sharpton, V.L. (eds.) Large Meteorite Impacts and Planetary Evolution II, pp. 177–192. Geological Society of America Inc. (1999)

    Google Scholar 

  27. Orti, L., Di Martino, M., Morelli, M., Cigolini, C., Pandeli, E., Buzzigoli, A.: Non-impact origin of the crater-like structures in the Gilf Kebir area (Egypt): Implications for the geology of Eastern Sahara. Meteorit. Planet. Sci. 43(10), 1629–1639 (2008)

    Article  Google Scholar 

  28. El-Baz, F., Ghoneim, E.: Largest crater shape in the Great Sahara revealed by multispectral images and radar data. Int. J. Remote Sens. 28(2), 451–458 (2007)

    Article  Google Scholar 

  29. Svetsov, V., Shuvalov, V., Kosarev, I.: Formation of Libyan desert glass: numerical simulations of melting of silica due to radiation from near-surface airbursts. Meteorit. Planet. Sci. 55(4), 895–910 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Diaz-Hernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jimenez-Martinez, N., Diaz-Hernandez, R., Ramirez-Cardona, M., Altamirano-Robles, L. (2021). Texture Based Supervised Learning for Crater-Like Structures Recognition Using ALOS/PALSAR Images. In: Roman-Rangel, E., Kuri-Morales, Á.F., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2021. Lecture Notes in Computer Science(), vol 12725. Springer, Cham. https://doi.org/10.1007/978-3-030-77004-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77004-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77003-7

  • Online ISBN: 978-3-030-77004-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics