Skip to main content

Double-Barrier Option Pricing Under the Hyper-Exponential Jump Diffusion Model

  • Conference paper
  • First Online:
Operator Theory and Harmonic Analysis (OTHA 2020)

Abstract

This work is devoted to the study of the valuation problem for a two-barrier option where the stock price is modeled by a Lévy process whose characteristic function is rational (hyper-exponential jump diffusion (HEJD) case). In a standard way, this problem is reduced to a convolution equation on a finite interval, which is solved explicitly using the modified Wiener–Hopf method. On the basis of the obtained explicit formulas, an algorithm for calculating the price of the option under consideration is developed and numerically implemented. On the other hand, with the help of the theory of generalized Toeplitz operators, theorems are proved about the existence and uniqueness of the solution of the original convolution equation and whether it belongs to a certain natural class of functions associated with the Sobolev spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We are deeply grateful to the referees for the useful comments that helped improve the presentation of the article.

References

  1. Kunitomo, N., Ikeda, M.: Pricing options with curved boundaries. Math. Financ. 2(4), 275–298 (1992). https://doi.org/10.1111/j.1467-9965.1992.tb00033.x

    Article  Google Scholar 

  2. Geman, H., Yor, M.: Pricing and hedging double-barrier options: a probabilistic approach. Math. Financ. 6(4), 365–378 (1996). https://doi.org/10.1111/j.1467-9965.1996.tb00122.x

    Article  Google Scholar 

  3. Sidenius, J.: Double barrier options: valuation by path counting. J. Comput. Financ. 1(3), 63–79 (1998). https://doi.org/10.21314/jcf.1998.012

    Article  Google Scholar 

  4. Pelsser, A.: Pricing double barrier options using Laplace transforms. Financ. Stoch. 4(1), 95–104 (2000). https://doi.org/10.1007/s007800050005

    Article  MathSciNet  Google Scholar 

  5. Baldi, P., Caramellino, L., Iovino, M.G.: Pricing general barrier options: a numerical approach using sharp large deviations. Math. Financ. 9(4), 293–321 (1999). https://doi.org/10.1111/1467-9965.t01-1-00071

    Article  MathSciNet  Google Scholar 

  6. Hui, C.H.: One-touch double barrier binary option values. Appl. Financ. Econ. 6(4), 343–346 (1996). https://doi.org/10.1080/096031096334141

    Article  Google Scholar 

  7. Hui, C.H.: Time-dependent barrier option values. J. Futur. Mark. 17(6), 667–688 (1997). https://doi.org/10.1002/(sici)1096-9934(199709)17:63.0.co;2-c

    Article  Google Scholar 

  8. Boyarchenko, S.I., Levendorskii, S.Z.: Non-Gaussian Merton-Black–Scholes Theory. World Scientific, Singapore (2002). https://doi.org/10.1142/4955

  9. Satõ, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  10. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. CRC Press, Boca Raton (2015). https://doi.org/10.1201/9780203485217

  11. Kou, S.G.: A jump diffusion model for option pricing. SSRN Electron. J. (2000). https://doi.org/10.2139/ssrn.242367

  12. Boyarchenko, S.I., Levendorskii, S.Z.: Option pricing for truncated Lévy processes. Int. J. Theor. Appl. Financ. 3(3), 549–552 (2000). https://doi.org/10.1142/s0219024900000541

    Article  Google Scholar 

  13. Kou, S.G., Wang, H.N.: Option pricing under a double exponential jump diffusion model. SSRN Electron. J. (2001). https://doi.org/10.2139/ssrn.284202

  14. Cont, R., Voltchkova, E.: Integro-differential equations for option prices in exponential Lévy models. Financ. Stoch. 9(3), 299–325 (2005). https://doi.org/10.1007/s00780-005-0153

    Article  Google Scholar 

  15. Kudryavtsev, O.E.: Advantages of the Laplace transform approach in pricing first touch digital options in Lévy-driven models. SSRN Electron. J. (2015). https://doi.org/10.2139/ssrn.2713193

  16. Boyarchenko, S.I., Levendorskii, S.Z.: Barrier options and touch-and-out options under regular Lévy processes of exponential type. Ann. Appl. Probab. 12(4), 1261–1298 (2002). https://doi.org/10.1214/aoap/1037125863

    Article  MathSciNet  Google Scholar 

  17. Kudryavtsev, O.E., Levendorskii, S.Z.: Fast and accurate pricing of barrier options under Levy processes. SSRN Electron. J. (2007). https://doi.org/10.2139/ssrn.1040061

  18. Kudryavtsev, O.E.: Finite difference methods for option pricing under Lévy processes: Wiener–Hopf factorization approach. Sci. World J. 2013, 1–12 (2013). https://doi.org/10.1155/2013/963625

    Article  Google Scholar 

  19. Boyarchenko, M., Boyarchenko, S.I.: User’s guide to pricing double barrier options. Part I: Kou’s model and generalizations. SSRN Electron. J. (2008). https://doi.org/10.2139/ssrn.1272081

  20. Boyarchenko, S.I.: Two-point boundary problems and perpetual american strangles in jump-diffusion models. SSRN Electron. J. (2006). https://doi.org/10.2139/ssrn.896260

  21. Grudsky, S.M.: Double barrier options under Lévy processes. In: Erusalimsky, Y.M., Gohberg, I., Grudsky, S.M., Rabinovich, V., Vasilevski, N. (eds.) Modern Operator Theory and Applications: The Igor Borisovich Simonenko Anniversary, vol. 2007. Birkhäuser, Basel, pp 107–135 (2006). https://doi.org/10.1007/978-3-7643-7737-3_8

    Chapter  Google Scholar 

  22. Sepp, A.: Analytical pricing of double-barrier options under a double-exponential jump diffusion process: applications of Laplace transform. Int. J. Theor. Appl. Financ. 7(2), 151–175 (2004). https://doi.org/10.1142/s0219024904002402

    Article  MathSciNet  Google Scholar 

  23. Kirkby, J.L.: Robust barrier option pricing by frame projection under exponential Levy dynamics. SSRN Electron. J. (2014). https://doi.org/10.2139/ssrn.2541980

  24. Crosby, J., Saux, N.L., Mijatovic, A.: Approximating Levy processes with a view to option pricing. SSRN Electron. J. (2009). https://doi.org/10.2139/ssrn.1403919

  25. Dybin, V., Grudsky, S.M.: Introduction to the theory of Toeplitz operators with infinite index. Birkhäuser, Basel (2002). https://doi.org/10.1007/978-3-0348-8213-2

  26. Gohberg, I., Krupnik, N.I.: One-dimensional linear singular integral equations. Birkhäuser, Basel (1992). https://doi.org/10.1007/978-3-0348-8647-5

  27. Böttcher, A., Silbermann, B., Karlovich, A.: Analysis of Toeplitz operators. Springer, Berlin (2006). https://doi.org/10.1007/3-540-32436-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Grudsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grudsky, S.M., Mendez-Lara, O.A. (2021). Double-Barrier Option Pricing Under the Hyper-Exponential Jump Diffusion Model. In: Karapetyants, A.N., Pavlov, I.V., Shiryaev, A.N. (eds) Operator Theory and Harmonic Analysis. OTHA 2020. Springer Proceedings in Mathematics & Statistics, vol 358. Springer, Cham. https://doi.org/10.1007/978-3-030-76829-4_10

Download citation

Publish with us

Policies and ethics