Skip to main content

The Singularity Set of Optimal Transportation Maps

  • Conference paper
  • First Online:
Numerical Geometry, Grid Generation and Scientific Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 143))

  • 702 Accesses

Abstract

Optimal transportation plays an important role in many engineering fields, especially in deep learning. By Brenier theorem, computating optimal transportation maps is reduced to solving Monge–Ampère equations, which in turn is equivalent to construct Alexandrov polytopes. Furthermore, the regularity theory of Monge–Ampère equation explains mode collapsing issue in deep learning. Hence, computing and studying the singularity sets of OT maps become important. In this work, we generalize the concept of medial axis to power medial axis, which describes the singularity sets of optimal transportation maps. Then we propose a computational algorithm based on variational approach using power diagrams. Furthermore, we prove that when the measures are changed homotopically, the corresponding singularity sets of the optimal transportation maps are homotopic equivalent as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandrov, A.D.: Convex Polyhedra. Translated from the 1950 Russian edition by N. S. Dairbekov, S. S. Kutateladze and A. B. Sossinsky. Springer Monographs in Mathematics. Springer, Berlin (2005)

    Google Scholar 

  2. An, D., Guo, Y., Lei, N., Luo, Z., Yau, S.T., Gu, X.: Ae-ot: a new generative model based on extended semi-discrete optimal transport. In: International Conference on Learning Representations (2020)

    Google Scholar 

  3. Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16(1), 78–96 (1987)

    Article  MathSciNet  Google Scholar 

  4. Brenier, Y.: Polar decomposition and increasing rearrangement of vector fields. C. R. Acad. Sci. Paris Sr. I Math. 305(19), 805–808 (1987)

    MATH  Google Scholar 

  5. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  Google Scholar 

  6. Chen, S., Figalli, A.: Partial w2,p regularity for optimal transport maps. J. Funct. Anal. 272, 4588–4605 (2017)

    Article  MathSciNet  Google Scholar 

  7. Figalli, A.: Regularity properties of optimal maps between nonconvex domains in the plane. Commun. Partial Differ. Equ. 35(3), 465–479 (2010)

    Article  MathSciNet  Google Scholar 

  8. Gel’fand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser, Boston (1994)

    Book  Google Scholar 

  9. Goodfellow, I.: NIPS 2016 tutorial: generative adversarial networks. arXiv:1701.00160 (2016)

    Google Scholar 

  10. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NIPS 2014), pp. 2672–2680 (2014)

    Google Scholar 

  11. Gu, X., Luo, F., Sun, J., Yau, S.T.: Variational principles for minkowski type problems, discrete optimal transport, and discrete monge-ampere equations. Asian J. Math. 20(2), 383–398 (2016)

    Article  MathSciNet  Google Scholar 

  12. Joe, B.: Construction of three-dimensional delaunay triangulations using local transformations. Comput. Aided Geom. Des. 8(2), 123–142 (1991)

    Article  MathSciNet  Google Scholar 

  13. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114 (2013)

    Google Scholar 

  14. Leal, F.S., De Loera, J.A., Rambau, J.: Triangulations, Structures for Algorithms and Applications. Springer, Berlin (2010)

    Google Scholar 

  15. Lei, N., Su, K., Cui, L., Yau, S.T., Gu, D.X.: A geometric view of optimal transportation and generative model. Comput. Aided Geom. Des. 68, 1–2 (2019)

    Article  MathSciNet  Google Scholar 

  16. Lei, N., Chen, W., Luo, Z., Si, H., Gu, X.: Secondary power diagram, dual of secondary polytope. Comput. Math. Math. Phys. 59(12), 1965–1981 (2019)

    Article  MathSciNet  Google Scholar 

  17. Lei, N., An, D., Guo, Y., Su, K., Liu, S., Luo, Z., Yau, S.T., Gu, X.: A geometric understanding of deep learning. Engineering 6(3), 361–374 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China under Grant Nos. 61720106005, 61772105, 61936002, and 61907005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, Z., Chen, W., Lei, N., Guo, Y., Zhao, T., Gu, X. (2021). The Singularity Set of Optimal Transportation Maps. In: Garanzha, V.A., Kamenski, L., Si, H. (eds) Numerical Geometry, Grid Generation and Scientific Computing. Lecture Notes in Computational Science and Engineering, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-030-76798-3_4

Download citation

Publish with us

Policies and ethics