Skip to main content

A Comparison of Contemporary Methods on Univariate Time Series Forecasting

  • Chapter
  • First Online:
Advances in Machine Learning/Deep Learning-based Technologies

Abstract

In data science, time series forecasting is the process of utilizing past or present (known) observations of a target variable to make predictions about future (unknown) observations. Due to the usefulness of forecasting applications in numerous real-life problems, various Statistical and Machine Learning forecasting models have been proposed over recent years. The purpose of this chapter is to compare the performance of several contemporary forecasting models that are considered state of the art. These include Autoregressive Integrated Moving Average (ARIMA), Neural Basis Expansion Analysis (NBEATS), Probabilistic Time Series Modeling focusing on deep learning-based models and others. In the first section of this work a brief theoretical background of the methods is provided. Then, the experimental procedure is being described. For the comparison, 40 univariate time series of financial data that cover a 1-year period were used. A python repository of automated time series forecasting models (AtsPy) was exploited to run the experiments. For the final comparison three different metrics (RMSE, MAE and MAPE) were taken into consideration. The results of this extended experimental procedure are presented through various explanatory diagrams of the methods’ performance in the final section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Actually, COVID-19 outbreak is in fact such a scenario, the consequences of which can be seen, among others, in various financial data.

  2. 2.

    Also with linear and non-linear time functions as components [62].

  3. 3.

    All of the implemented in AtsPy framework algorithms were used during the whole experimental procedure.

References

  1. R. Adhikari, R.K. Agrawal, An Introductory Study on Time Series Modeling and Forecasting (2013). https://doi.org/10.1210/jc.2006-1327. arXiv Preprint arXiv:13026613

  2. A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus, T. Januschowski, D.C. Maddix, S. Rangapuram, D. Salinas, J. Schulz, L. Stella, A.C. Türkmen, Y. Wang, GluonTS: probabilistic time series models in python. (2019), pp. 1–2

    Google Scholar 

  3. A.M. Awajan, M.T. Ismail, A hybrid approach EMD-HW for short-term forecasting of daily stock market time series data, in AIP Conf Proc, vol. 1870 (2017). https://doi.org/10.1063/1.4995933

  4. A.M. Awajan, M.T. Ismail, Wadi S. Al, Improving forecasting accuracy for stock market data using emd-hw bagging. PLoS One 13, 1–20 (2018). https://doi.org/10.1371/journal.pone.0199582

  5. A. Barkat, A. Ali, U. Hayat, Q.G. Crowley, K. Rehman, N. Siddique, T. Haidar, T. Iqbal, Time series analysis of soil radon in Northern Pakistan: Implications for earthquake forecasting. Appl. Geochem. 97, 197–208 (2018). https://doi.org/10.1016/j.apgeochem.2018.08.016

  6. J.M. Binner, T. Elger, B. Nilsson, J.A. Tepper, Tools for Non-Linear Time Series Forecasting in Economics - an Empirical Comparison of Regime Switching Vector Autoregressive Models and Recurrent Neural Networks. Adv. Econ. 19, 71–91 (2004). https://doi.org/10.1016/S0731-9053(04)19003-8

  7. G.E.P. Box, D.R. Cox, An Analysis of Transformations. J. R. Stat. Soc. Ser. B 26, 211–243 (1964)

    MATH  Google Scholar 

  8. J. Cao, J. Wang, Stock price forecasting model based on modified convolution neural network and financial time series analysis. Int. J. Commun. Syst. 32, 1–13 (2019). https://doi.org/10.1002/dac.3987

    Article  Google Scholar 

  9. T. Chai, R.R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7, 1247–1250 (2014). https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  10. H.K. Chan, S. Xu, X. Qi, A comparison of time series methods for forecasting container throughput. Int. J. Logist. Res. Appl. 22, 294–303 (2019). https://doi.org/10.1080/13675567.2018.1525342

    Article  Google Scholar 

  11. C. Chatfield, The Holt-Winters forecasting procedure. Appl. Stat. 27, 264 (1978). https://doi.org/10.2307/2347162

    Article  Google Scholar 

  12. C.C. Chen, J.H. Chang, F.C. Lin, J.C. Hung, C.S. Lin, Y.H. Wang, Comparison of forcasting ability between backpropagation network and ARIMA in the prediction of bitcoin price, in Proc—2019 Int Symp Intell Signal Process Commun Syst ISPACS, 2019–2020 (2019). https://doi.org/10.1109/ISPACS48206.2019.8986297

  13. J.F. Chen, W.L. Chen, C.P. Huang, S.H. Huang, A.P. Chen, Financial time-series data analysis using deep convolutional neural networks, in Proc—2016 7th Int Conf Cloud Comput Big Data. CCBD, vol. 2016 (2017), pp. 87–92. https://doi.org/10.1109/CCBD.2016.027

  14. H.K. Choi, Stock Price Correlation Coefficient Prediction with ARIMA-LSTM Hybrid Model (2018)

    Google Scholar 

  15. E. Chong, C. Han, F.C. Park, Deep learning networks for stock market analysis and prediction: methodology, data representations, and case studies. Expert. Syst. Appl. 83, 187–205 (2017). https://doi.org/10.1016/j.eswa.2017.04.030

    Article  Google Scholar 

  16. T.G. Dietterich, Ensemble methods in machine learning, in mult classif syst, vol. 1857(1–15) (2000), pp. 45014–45019. https://doi.org/10.1007/3-540-45014-9

  17. Y. Dong, S. Li, X. Gong, Time series analysis: an application of Arima model in stock price forecasting, vol. 29 (2017), pp. 703–710. https://doi.org/10.2991/iemss-17.2017.140

  18. O.J. Dunn, Multiple comparisons among means. J. Am. Stat. Assoc. 56, 52 (1961). https://doi.org/10.2307/2282330

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Duvodq, V.W.X. Nkdv, H.G.X. Wu, Dataset A ARIMA e ProphetFB. C:6–9 (2016)

    Google Scholar 

  20. A. Essien, C. Giannetti, A Deep learning framework for univariate time series prediction using convolutional LSTM stacked autoencoders, in IEEE Int Symp Innov Intell Syst Appl INISTA 2019—Proc (2019), pp. 1–6. https://doi.org/10.1109/INISTA.2019.8778417

  21. J. Faraway, C. Chatfield, Time series forecasting with neural networks: a comparative study using the airline data. J. R. Stat. Soc. Ser. C Appl. Stat. 47, 231–250 (1998). https://doi.org/10.1111/1467-9876.00109

  22. J.H. Friedman, Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937). https://doi.org/10.1080/01621459.1937.10503522

    Article  MATH  Google Scholar 

  24. M. Geurts, G.E.P. Box, G.M. Jenkins, Time series analysis: forecasting and control. J. Mark. Res. 14, 269 (1977). https://doi.org/10.2307/3150485

    Article  Google Scholar 

  25. A. Graves, Generating Sequences with Recurrent Neural Networks (2013), pp. 1–43

    Google Scholar 

  26. S. Hansun, A new approach of Brown’s double exponential smoothing method in time series analysis. Balk. J. Electr. Comput. Eng. 4, 75–78 (2016). https://doi.org/10.17694/bajece.14351

  27. A. Harvey, S.J. Koopman, M. Riani, The modeling and seasonal adjustment of weekly observations. J. Bus. Econ. Stat. 15, 354–368 (1997). https://doi.org/10.1080/07350015.1997.10524713

  28. T. Hastie, R. Tibshirani, Generalized additive models: some applications. J. Am. Stat. Assoc. 82, 371–386 (1987). https://doi.org/10.1080/01621459.1987.10478440

    Article  MATH  Google Scholar 

  29. S. Hochreiter, LSTM can solve hard long time lag problems, in Adv Neural Inf Process Syst (1997), pp. 473–479

    Google Scholar 

  30. C.C. Holt, Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 20, 5–10 (2004). https://doi.org/10.1016/j.ijforecast.2003.09.015

    Article  Google Scholar 

  31. R.J. Hyndman, G. Athanasopoulos, Forecasting: principles and practice, in Principles of Optimal Design (2018)

    Google Scholar 

  32. R.J. Hyndman, A.B. Koehler, Another look at measures of forecast accuracy. Int. J. Forecast. 22, 679–688 (2006). https://doi.org/10.1016/j.ijforecast.2006.03.001

  33. A.T. Jebb, L. Tay, W. Wang, Q. Huang, Time series analysis for psychological research: examining and forecasting change. Front. Psychol. 6, 1–24 (2015). https://doi.org/10.3389/fpsyg.2015.00727

  34. Z. Karevan, J.A.K. Suykens, Transductive LSTM for time-series prediction: an application to weather forecasting. Neural Netw. 125, 1–9 (2020). https://doi.org/10.1016/j.neunet.2019.12.030

  35. I. Koprinska, D. Wu, Z. Wang, Convolutional neural networks for energy time series forecasting, in Proc Int Jt Conf Neural Networks 2018 (2018). https://doi.org/10.1109/IJCNN.2018.8489399

  36. L. Lenferink, A comparison between artificial neural networks and ARIMA models in traffic forecasting (2019), pp. 1–12

    Google Scholar 

  37. A.M. De Livera, R.J. Hyndman, R.D. Snyder, Forecasting time series with complex seasonal patterns using exponential smoothing. Monash Univ Work Pap to appear (2010). https://doi.org/10.1198/jasa.2011.tm09771

  38. S. Mahmud, Bangladesh COVID-19 daily cases time series analysis using facebook prophet model (2020). https://doi.org/10.13140/RG.2.2.23220.68481

  39. M. Maleki, M.R. Mahmoudi, D. Wraith, K.H. Pho, Time series modelling to forecast the confirmed and recovered cases of COVID-19. Travel Med. Infect. Dis. 101742 (2020). https://doi.org/10.1016/j.tmaid.2020.101742

  40. L. Mason, J. Baxter, P. Bartlett, M. Frean, Boosting algorithms as gradient descent in function space. Nips (1999). 10.1109/5.58323

    Google Scholar 

  41. N. Merh, V.P. Saxena, K.R. Pardasani, A comparison between hybrid approaches of ANN and Arima for indian stock trend forecasting. Bus. Intell. J. 3, 23–43 (2010)

    Google Scholar 

  42. A. Molina, B. Ponte, J. Parreno, D. De la Fuente, J. Costas, Forecasting erratic demand of medicines in a public hospital: a comparison of artificial neural networks and ARIMA models, in Proc 2016 Int Conf Artif Intell ICAI 2016—WORLDCOMP 2016 (2016), pp. 401–406

    Google Scholar 

  43. A. de Myttenaere, B. Golden, B. Le Grand, F. Rossi, Mean absolute percentage error for regression models. Neurocomputing 192, 38–48 (2016). https://doi.org/10.1016/j.neucom.2015.12.114

  44. M.M. Navarro, B.B. Navarro, Optimal short-term forecasting using GA-based Holt-Winters method (2019), pp. 681–685

    Google Scholar 

  45. B.N. Oreshkin, D. Carpov, N. Chapados, Y. Bengio, N-BEATS: Neural basis expansion analysis for interpretable time series forecasting (2019), pp. 1–31

    Google Scholar 

  46. G. Papacharalampous, H. Tyralis, D. Koutsoyiannis, Univariate time series forecasting of temperature and precipitation with a focus on machine learning algorithms: a multiple-case study from Greece. Water Resour. Manag. 32, 5207–5239 (2018). https://doi.org/10.1007/s11269-018-2155-6

  47. V. Papastefanopoulos, P. Linardatos, S. Kotsiantis, COVID-19: a comparison of time series methods to forecast percentage of active cases per population. Appl. Sci. 10, 1–15 (2020). https://doi.org/10.3390/app10113880

    Article  Google Scholar 

  48. L. Di. Persio, O. Honchar, Artificial neural networks architectures for stock price prediction: comparisons and applications. Int. J. Circuits Syst. Signal Process. 10, 403–413 (2016)

    Google Scholar 

  49. A. Rahman, A.S. Ahmar, Forecasting of primary energy consumption data in the United States: a comparison between ARIMA and Holter-Winters models, in AIP Conf Proc, vol. 1885 (2017). https://doi.org/10.1063/1.5002357

  50. A.M. Rather, A prediction based approach for stock returns using autoregressive neural networks, in Proc 2011 World Congr Inf Commun Technol WICT 2011. (2011), pp. 1271–1275. https://doi.org/10.1109/WICT.2011.6141431

  51. A.M. Rather, A. Agarwal, V.N. Sastry, Recurrent neural network and a hybrid model for prediction of stock returns. Expert. Syst. Appl. 42, 3234–3241 (2015). https://doi.org/10.1016/j.eswa.2014.12.003

  52. O. Sagi, L. Rokach, Ensemble learning: a survey, in Wiley Interdiscip Rev Data Min Knowl Discov, vol. 8 (2018), pp. 1–18. https://doi.org/10.1002/widm.1249

  53. S.Q. Salih, A. Sharafati, I. Ebtehaj, H. Sanikhani, R. Siddique, R.C. Deo, H. Bonakdari, S. Shahid, Z.M. Yaseen, Integrative stochastic model standardization with genetic algorithm for rainfall pattern forecasting in tropical and semiarid environments. Hydrol. Sci. J. 65, 1145–1157 (2020). https://doi.org/10.1080/02626667.2020.1734813

  54. D. Salinas, V. Flunkert, J. Gasthaus, T. Januschowski, DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. (2019). https://doi.org/10.1016/j.ijforecast.2019.07.001

  55. L. Seymour, P.J. Brockwell, R.A. Davis, Introduction to Time Series and Forecasting. (1997)

    Google Scholar 

  56. S. Siami-Namini, N. Tavakoli, A. Siami Namin, A comparison of ARIMA and LSTM in forecasting time series, in Proc—17th IEEE Int Conf Mach Learn Appl ICMLA 2018 (2019), pp. 1394–1401. https://doi.org/10.1109/ICMLA.2018.00227

  57. F. Sidqi, I.D. Sumitra, Forecasting product selling using single exponential smoothing and double exponential smoothing methods, in IOP Conf Ser Mater Sci Eng, vol. 662. (2019). https://doi.org/10.1088/1757-899X/662/3/032031

  58. R. Singh, S. Srivastava, Stock prediction using deep learning. Multimed. Tools Appl. 76, 18569–18584 (2017). https://doi.org/10.1007/s11042-016-4159-7

  59. N. Sirimevan, I.G.U.H. Mamalgaha, C. Jayasekara, Y.S. Mayuran, C. Jayawardena, Stock market prediction using machine learning techniques, in Int. Conf Adv Comput ICAC, pp. 192–197 (2019). https://doi.org/10.1109/ICAC49085.2019.9103381

  60. D. Snow, AtsPy: Automated Time Series Models in Python (1.15). (2020)

    Google Scholar 

  61. I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 4, 3104–3112 (2014)

    Google Scholar 

  62. S.J. Taylor, B. Letham, Business time series forecasting at scale. PeerJ Prepr. 5e3190v2 35, 48–90 (2017). https://doi.org/10.7287/peerj.preprints.3190v2

  63. S.A.L. Wadi, M. Almasarweh, A.A. Alsaraireh, Predicting closed price time series data using ARIMA model. Mod. Appl. Sci. 12, 181 (2018). https://doi.org/10.5539/mas.v12n11p181

  64. M.B. Wagena, D. Goering, A.S. Collick, E. Bock, D.R. Fuka, A. Buda, Z.M. Easton, Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian models. Environ. Model. Softw. 126, 104669 (2020). https://doi.org/10.1016/j.envsoft.2020.104669

  65. J. Wang, J. Wang, Neurocomputing forecasting stock market indexes using principle component analysis and stochastic time effective neural networks. Neurocomputing 156, 68–78 (2015). https://doi.org/10.1016/j.neucom.2014.12.084

  66. W.W.S. Wei, Time Series Analysis Univariate and Multivariate Methods. (Pearson Education, 2018)

    Google Scholar 

  67. C.J. Willmott, K. Matsuura, Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79–82 (2005). https://doi.org/10.3354/cr030079

    Article  Google Scholar 

  68. P.R. Winters, Forecasting sales by exponentially weighted moving averages. Manag. Sci. 6, 324–342 (1960). https://doi.org/10.1287/mnsc.6.3.324

    Article  MathSciNet  MATH  Google Scholar 

  69. L. Xiong, Y. Lu, Hybrid ARIMA-BPNN model for time series prediction of the Chinese stock market, in 2017 3rd Int Conf Inf Manag ICIM 2017, pp. 93–97 (2017). https://doi.org/10.1109/INFOMAN.2017.7950353

  70. H. Yu, L.J. Ming, R. Sumei, Z. Shuping, A hybrid model for financial time series forecasting-integration of EWT, ARIMA with the improved ABC optimized ELM. IEEE Access. 8, 84501–84518 (2020). https://doi.org/10.1109/ACCESS.2020.2987547

  71. G.P. Zhang, Neural networks for time-series forecasting, in Handbook of National Computing, vol. 1–4, (2012). pp. 461–477. https://doi.org/10.1007/978-3-540-92910-9_14

  72. K. Zhang, G. Chuai, W. Gao, X. Liu, S. Maimaiti, Z. Si, A new method for traffic forecasting in urban wireless communication network. EURASIP J. Wirel. Commun. Netw. 2019 (2019). https://doi.org/10.1186/s13638-019-1392-6

  73. E. Zunic, K. Korjenic, K. Hodzic, D. Donko, Application of facebook’s prophet algorithm for successful sales forecasting based on real-world data. Int. J .Comput. Sci. Inf. Technol. 12, 23–36 (2020). https://doi.org/10.5121/ijcsit.2020.12203

  74. S.A. Yarushev, A.N. Averkin, Review of studies on time series forecasting based on hybrid methods, neural networks and multiple regression. Int. J . Soft Syst. 31, 75–82 (2016). https://doi.org/10.15827/0236-235x.113.075-082

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotiris Kotsiantis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karanikola, A., Liapis, C.M., Kotsiantis, S. (2022). A Comparison of Contemporary Methods on Univariate Time Series Forecasting. In: Tsihrintzis, G.A., Virvou, M., Jain, L.C. (eds) Advances in Machine Learning/Deep Learning-based Technologies. Learning and Analytics in Intelligent Systems, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-76794-5_8

Download citation

Publish with us

Policies and ethics