Skip to main content

Professor Józef Wojnarowski—IFToMMist and Pioneer of Graphs’ Application in Mechanics in Poland

  • Chapter
  • First Online:
Graph-Based Modelling in Science, Technology and Art

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 107))

  • 437 Accesses

Abstract

The chapter is dedicated to the achievements of Professor Józef Wojnarowski, polish IFToMM activist, who had originated graph-based modelling of mechanical systems in Poland in the 70’s of the twentieth century. He simultaneously, attracted a group of co-workers as well as other Polish scientists to this idea. All together they wrote a bunch of papers and a few books related to graph theory application. He also initiated and organized two international conferences “Graphs and Mechanics”. So, He could be recognized as a very important scientists whose output is fully in accordance with the goals of the present book and the IFToMM mission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the mentioned file, one can see the photo from Zakopane from 1969. Professor Wojnarowski is sitting against the rear wall, fist on the left in upper row.

References

  1. Official IFToMM Web-page: http://iftomm.net/; access 102020

  2. Wojnarowski, J.: Analysis of discrete linear mechanical systems of limited degree of freedom by means of the graph method, In: Proceedings of Polish-Czechoslovak Conference on Machine Dynamics, vol. 2, pp. 567–58l (1971)

    Google Scholar 

  3. Wojnarowski, J.: Graph as a language of the systems’ structure. Scientific Papers of Silesian University of Technology, Series: Mechanics, Z., vol. 52, issue 389, pp. 3–21 (1973) (in Polish)

    Google Scholar 

  4. Arczewski, K.: Topological analysis of mechanical vibrating linear systems by means of structural numbers. Arch. Mach. Build. 19(4), 589–605 (1972)

    Google Scholar 

  5. Arczewski, K.: Analysis and Synthesis of Vibrating Mechanical Systems Utilizing the Method of Structural Numbers. Doctor Thesis. Warsaw University. Technology. (in Polish) (1974)

    Google Scholar 

  6. Arczewski, K.: Topological analysis of a class of lumped vibrational systems by the method of structural numbers. J. Sound. Vibr. 97(1), 75–86 (1984)

    Article  MATH  Google Scholar 

  7. Arczewski, K.: Application of graph theory to the determination of potential energy of systems consisting of rigid bodies and springs. J. Franklin Inst. 324(3), 369–386 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arczewski, K.: Application of graph theory to the mathematical modelling of a class of rigid bodies systems. J. Franklin Inst. 327(2), 209–223 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Arczewski, K.: Graph theoretical approach—I. Determination of kinetic energy for a class of particle systems. J. Franklin Inst. 329(3), 469–481 (1992)

    Google Scholar 

  10. Arczewski, K.: Graph theoretical approach—II. Determination of generalized forces for a class of systems consisting of particles and springs. J. Franklin Inst. 329(3), 483–491 (1992)

    Google Scholar 

  11. Arczewski, K.: Graph theoretical approach—III. Equations of motion of a class of constrained particle systems. J. Franklin Inst. 329(3), 493–510 (1992)

    Google Scholar 

  12. Arczewski, K., Dul, F.: Determination of angular velocities within a multibody system by means of graphs. Z. Angew. Math. Mech. (ZAMM) 75 (SI), S105–S106 (1995)

    Google Scholar 

  13. Świder, J.: Matrix hybrid graphs in descriptions of complex vibrating mechanical systems. In: Scientific Papers of the Silesian University of Technology, Series: Mechanics, vol. 106, 221p (in Polish) (1991)

    Google Scholar 

  14. Wojnarowski, J., Margielewicz, J., Żochowski, L.: Modelling of human walking via bond multi-graphs. In: Proceedings of the 17th Conference of Biomechanics, Acta of Bioengineering and Biomechanics, vol. 3, issue 2, pp. 663–670 (2001)

    Google Scholar 

  15. Zawiślak, S.: The graph-based methodology as an artificial intelligence aid for mechanical engineering design. Habilitation-thesis, Publishing House of the University of Bielsko-Biała, Bielsko-Biała, 284p (2010)

    Google Scholar 

  16. Wojnarowski, J., Mirota, K.: Modelling of blood circulating system by means of graph matrix representation, graphs and mechanics. In: Proceeding of the Second International Conference, Gliwice, pp. 53–54 (1999)

    Google Scholar 

  17. Buchacz, A.: Modelling, synthesis and analysis of bar systems characterized by a cascade structure represented by graphs. Mech. Mach. Theor. 30(7), 969–986 (1995)

    Article  Google Scholar 

  18. Orlikowski, C.: Symbolic analysis of bond graphs by application of the Coates rule. Mech. Mach. Theor. 30(7), 1019–1026 (1995)

    Article  Google Scholar 

  19. Pikoń, A., Wojnarowski, J.: Application of structural numbers to generating the characteristics of mechanical systems. Mech. Mach. Theor.s 30(7), 1027–1037 (1995)

    Article  Google Scholar 

  20. Świder, J.: Matrix hybrid graphs as models of complex vibrating mechanical systems. Mech. Mach. Theor. 30(7), 1073–1098 (1995)

    Article  Google Scholar 

  21. Wojnarowski, J., Zawiślak, S.: Modelling of mechanical system by means of matroids. Mech. Mach. Theor. 36(6), 717–724 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hsu, C.H.: Systematic enumeration of epicyclic gear mechanisms for automotives. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 42(1), 225–233 (1999)

    Google Scholar 

  23. Drewniak, J., Zawiślak, S.: Graph methods in kinematical analysis of multi-speed epicyclic gears. Int. J. Appl. Mech. Eng. 17(3), 791–798 (2012)

    Google Scholar 

  24. Drewniak, J., Kopeć, J., Zawiślak, S.: Graph models of automobile gears-kinematics. Int. J. Appl. Mech. Eng. 19(3), 563–573 (2014)

    Article  Google Scholar 

  25. Drewniak, J., Zawiślak, S., Kopeć, J.: Analysis of complex planetary gears by means of versatile graph based approaches. In: New Approaches to Gear Design and Production, pp. 349–364. Springer, Cham (2020)

    Google Scholar 

  26. Drewniak, J., Kopeć, J., Zawiślak, S.: Kinematical and efficiency analysis of planetary gear trains by means of various graph-based approaches. In: Theory and Practice of Gearing and Transmissions, pp. 263–284. Springer, Cham (2016)

    Google Scholar 

  27. Bellert, S., Woźniacki, H.: Analysis and synthesis of electrical system by means of the method of structural numbers. WNT, Warszawa (in Polish) (1968)

    Google Scholar 

  28. Wojnarowski, J.: Application of graphs in analysis of vibrations of mechanical systems. Polish Academy of Science, PWN Warszawa (in Polish) (1991)

    Google Scholar 

  29. Kaveh, A.: Structural mechanics: graph and matrix methods. Macmillan Int. High. Educ. (1992)

    Google Scholar 

  30. Tsai, L.-W.: Mechanism design: enumeration of kinematical structures according to function. CRC Press, Boca Raton, USA (2000)

    Book  Google Scholar 

  31. Zawiślak, S., Rysiński, J. (eds.): Graph-Based Modelling in Engineering, 247p. Springer (2017)

    Google Scholar 

  32. Ceccarelli, M., Lopez-Cajun, S.: A brief History through a Photo Gallery. http://iftomm.net/images/Documents/About/IFToMM_History-min.pdf; poster about IFToMM; access 10 Dec 2020

  33. Wojnarowski, J.: The significance and role of IFToMM Poland in the creative development of mechanism and machine science. In: Technology Developments: The Role of Mechanism and Machine Science and IFToMM, pp. 367–382. Springer, Dordrecht (2011)

    Google Scholar 

  34. Ceccarelli, M.: The IFToMM World Congresses and IFToMM Presidents, http://iftomm.net/images/Documents/About/09_AllWCposterHistory_of_IFToMM-_WC.pdf; access 10 Dec 2020

  35. Wojnarowski, J.: Report on the 14th IFToMM 2015 World Congress (International Federation for the Promotion of Mechanism and Machine Science IFToMM) which was held on 25–30 Oct 2015, Taipei, Taiwan. Int. J. Appl. Mech. Eng. 20(4), I–VI (2015)

    Google Scholar 

  36. Trent, H.M.: Isomorphisms between oriented linear graphs and lumped physical systems. J. Acoust. Soc. Am. 27(3), 500–527 (1955)

    Article  MathSciNet  Google Scholar 

  37. Xue, H.L., Liu, G., Yang, X.H.: A review of graph theory application research in gears. In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. vol. 230, issue10, pp. 1697–1714 (2016)

    Google Scholar 

  38. Wojnarowski, J., Zawiślak, S.: Kazimierz Kuratowski—biography and genesis of the theorem on planar graphs. In: Graph-Based Modelling in Engineering, pp. 233–246. Springer, Cham (2017)

    Google Scholar 

  39. Zawiślak, S.: Artificial intelligence aided design of gears based on graph-theoretical models. In: IFToMM Twelfth World Congress in Mechanism and Machine Science, Besancon, France. https://www.yumpu.com/en/document/read/22539646/artificial-intelligence-aided-design-of-gears-based-on-iftomm (2007)

  40. Zawiślak, S., Szypuła, Ł, Myśliwiec, M., Jagosz, A.: Some applications of graph transformations in modeling of mechanical systems. Proc. GT-VMT 3, 332–345 (2008)

    Google Scholar 

  41. Shai, O., Preiss, K.: Graph theory representations of engineering systems and their embedded knowledge. Artif. Intell. Eng. 13(3), 273–284 (1999)

    Article  Google Scholar 

  42. Shai, O.: The duality relation between mechanisms and trusses. Mech. Mach. Theor. 36(3), 343–369 (2001)

    Article  MATH  Google Scholar 

  43. Shai, O.: Utilization of the dualism between determinate trusses and mechanisms. Mech. Mach. Theor. 37(11), 1307–1323 (2002)

    Article  MATH  Google Scholar 

  44. Shai, O.: Transforming engineering problems through graph representations. Adv. Eng. Inform. 17(2), 77–93 (2003)

    Article  Google Scholar 

  45. Shai, O., Mohr, Y.: Towards transferring engineering knowledge through graph representations: transferring Willis method to mechanisms and trusses. Eng. Comput. 20(1), 2–10 (2004)

    Article  Google Scholar 

  46. Ding, H., Feng, Z., Yang, W., Kecskeméthy, A.: Structure synthesis of 6-DOF forging manipulators. Mech. Mach. Theor. 111, 135–151 (2017)

    Article  Google Scholar 

  47. Ding, H., Hou, F., Kecskeméthy, A., Huang, Z.: Synthesis of a complete set of contracted graphs for planar non-fractionated simple-jointed kinematic chains with all possible DOFs. Mech. Mach. Theor. 46(11), 1588–1600 (2011)

    Article  Google Scholar 

  48. McPhee, J.J., Milad, G.I., Andrews, G.C.: Wittenburg’s formulation of multibody dynamics equations from a graph-theoretic perspective. Mech. Mach. Theor. 31(2), 201–213 (1996)

    Article  Google Scholar 

  49. McPhee, J.J.: On the use of linear graph theory in multibody system dynamics. Nonlinear Dyn. 9(1–2), 73–90 (1996)

    Article  Google Scholar 

  50. McPhee, J.J.: A unified graph—theoretic approach to formulating multibody dynamics equations in absolute or joint coordinates. J. Franklin Inst. 334(3), 431–445 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Oshinowo, O.M., McPhee, J.J.: Object-oriented implementation of a graph-theoretic formulation for planar multibody dynamics. Int. J. Numer. Meth. Eng. 40(22), 4097–4118 (1997)

    Article  MATH  Google Scholar 

  52. Lu, Y., Ye, N.: Type synthesis of parallel mechanisms by utilizing sub-mechanisms and digital topological graphs. Mech. Mach. Theor. 109, 39–50 (2017)

    Article  Google Scholar 

  53. Yan, H.S., Chiu, Y.T.: An algorithm for the construction of generalized kinematic chains. Mech. Mach. Theor. 62, 75–98 (2013)

    Article  Google Scholar 

  54. Yan, H.S., Chiu, Y.T.: An improved algorithm for the construction of generalized kinematic chains. Mech. Mach. Theor. 78, 229–247 (2014)

    Article  Google Scholar 

  55. Drewniak, J., et al.: Modified method of the kinematic analysis of planar linkage mechanism for non-stationary motion modes. In: New Advances in Mechanisms, Mechanical Transmissions and Robotics, pp. 15–23. Springer, Cham (2017)

    Google Scholar 

  56. Deptuła, A., Partyka, M.A.: Application of dependence graphs and game trees for decision decomposition for machine systems. J. Autom. Mobile Robot. Intel. Syst. 5, 17–26 (2011)

    Google Scholar 

  57. Huang, P., Ding, H., Yang, W., Kecskeméthy, A.: An automatic method for the connectivity calculation in planar closed kinematic chains. Mech. Mach. Theor. 109, 195–219 (2017)

    Article  Google Scholar 

  58. Kecskeméthy, A., Krupp, T., Hiller, M.: Symbolic processing of multiloop mechanism dynamics using closed-form kinematics solutions. Multibody Syst. Dyn. 1(1), 23–45 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  59. Shanmukhasundaram, V.R., Rao, Y.V.D., Regalla, S.P.: Algorithms for detection of degenerate structure in epicyclic gear trains using graph theory. J. Braz. Soc. Mech. Sci. Eng. 41(496) (2019)

    Google Scholar 

  60. Xu, X., Sun, H., Liu, Y., Dong, P.: Matrix-based operation method for detecting structural isomorphism of planetary gear train structures. J. Mech. Des. 142(6) (2020)

    Google Scholar 

  61. Zawiślak, S., Jagosz, A.: Application of evolutionary algorithm and graph-based method of stress calculation to truss optimization, scientific publications. Electron. Warsaw Univ. Technol. 165, 253–262 (2008)

    Google Scholar 

  62. Zawiślak, S., Matusiak, D.: Multi-objective evolutionary design of trusses using graph-based method for stress calculation. Trans. Univ. Košice, Slovakia 3, 181–184 (2009)

    Google Scholar 

  63. Wojnarowski, J.: Graph representation of mechanical systems. Mech. Mach. Theor. 30(7), 1099–1112 (1975)

    Article  Google Scholar 

  64. Wojnarowski, J.: The graph method of determining the loads in complex gear trains. Mech. Mach. Theor. 11(2), 103–121 (1976)

    Article  Google Scholar 

  65. Wojnarowski, J.: Application of graphs in the analysis of vibrating 3-dimentinal systems. Int. J. Appl. Mech. Eng. 21(3), 761–766 (2016)

    Article  Google Scholar 

  66. Zawiślak, S., Wojnarowski, J.: Matroid model of mechanical systems. In: Book of Abstracts. Annual Scientific Conference GAMM 2001, ETH Zürich, p. 165 (2001)

    Google Scholar 

  67. Wojnarowski, J., Kopeć, J., Zawiślak, S.: Gears and graphs. J. Theor. Appl. Mech. 44(1), 139–162 (2006)

    Google Scholar 

  68. Wojnarowski, J., Lidwin, A.: The application of signal flow graphs—the kinematic analysis of planetary gear trains. Mech. Mach. Theor. 10(1), 17–31 (1975)

    Article  Google Scholar 

  69. Wojnarowski, J., Świder, J.: Method of independent contours for direct transformation of mechanical system into its signal flow graph. J. Theor. Appl. Mech. 16(4), 507–515 (1978)

    Google Scholar 

  70. Buchacz, A.: Analysis of beam hypergraphs by means of exact and approximate methods as models of transverse vibrating subsystems in the synthesis of mechanical and mechatronic systems. Arch. Mech. Eng. 57(4), 431–442 (2010)

    Article  Google Scholar 

  71. Buchacz, A.: Transformated hypergraphs in synthesis of vibrating beam-systems. PAMM 10(1), 361–362 (2010)

    Article  Google Scholar 

  72. Buchacz, A.: Introduction to synthesis of the torsional vibrating discrete-continuous mechatronic systems by means of the hypergraphs and structural numbers method. J. Vibroengineering 14(2), 514–519 (2012)

    Google Scholar 

  73. Buchacz, A., Wojnarowski, J.: The modelling of vibrating bar systems with nonlinear changeable sections of robots by means of hypergraphs and structural numbers. J. Franklin Inst. 332(4), 443–467 (1995)

    Article  MATH  Google Scholar 

  74. Buchacz, A., Machura, A., Pasek, M.: Hypergraphs in investigation of trajectory of robot’s manipulator with links as thin-walled bars. Autom. Constr. 7(5), 363–383 (1998)

    Article  Google Scholar 

  75. Nowak, A., Czapla, K., Kaczmarek, K.: Modelling of vibrations of machines models by use of the hybrid bond graphs. J. Theor. Appl. Mech. 41(4), 903–918 (2003)

    Google Scholar 

  76. Wojnarowski, J., Margielewicz, J., Gąska, D.: Identification of chaotic attractors of the overhead travelling crane model. In: IFToMM World Congress on Mechanism and Machine Science, pp. 3047–3056. Springer, Cham (2019)

    Google Scholar 

  77. Wojnarowski, J., et al.: Application of contour equations to kinematic analysis of complex and compound planetary gears. In: IFToMM World Congress on Mechanism and Machine Science, pp. 987–996. Springer, Cham (2019)

    Google Scholar 

  78. Nowak, A.: Graphs. Theory and Problems. Publishing House of the Silesian University of Technology, Gliwice, 148p (in Polish) (2006)

    Google Scholar 

  79. Wojnarowski, J.: Laboratory of TMM. Publishing House of the Silesian University of Technology. Lecture Notes No 684, Gliwice (in Polish) (1976)

    Google Scholar 

  80. Wojnarowski, J., Bogucki, Z.: Mechanics. Exercises and Problems. Publishing House of the Silesian University of Technology. Lecture notes No 1006, Gliwice (1983) (in Polish)

    Google Scholar 

  81. Wojnarowski, J., Buchacz, A., Nowak, A., Świder, J.: Modelling of vibration of mechanical systems by means of graphs and structural numbers method. Publishing House of the Silesian University of Technology. Lecture Notes No 1266, Gliwice (1986) (in Polish)

    Google Scholar 

  82. Wojnarowski, J., Mirota, K.: Experimental criteria for hemodynamical evaluation of the artificial mechanical heart valves. In: Proceedings of the 17th Conference of Biomechanics, Acta of Bioengineering and Biomechanics, vol. 3, issue 2, pp. 655–662 (2001)

    Google Scholar 

  83. Wojnarowski, J., Mirota, K.: On hydrodynamic characteristics of aortic mechanical artificial heart valves. In: Proceeding of the 11th World Congress in Mechanism and Machine Science, vol. 1, pp. 101–104. Tianjin University, China (2004)

    Google Scholar 

  84. Wojnarowski, J., Buchacz, A.: Application of graphs and structural numbers for determination of the characteristic equation and the frequency spectrum. J. Theor. Appl. Mech. 13(4), 545–560 (1975)

    MathSciNet  MATH  Google Scholar 

  85. Wojnarowski, J., Adamiec-Wójcik, I.: Free vibrations of a frame of a band saw using the rigid finite element method. Mech. Mach. Theory 40(2), 241–258 (2005)

    Article  MATH  Google Scholar 

  86. Wojnarowski, J., Onishchenko, V.: Tooth wear effects on spur gear dynamics. Mech. Mach. Theor. 38(2), 161–178 (2003)

    Article  MATH  Google Scholar 

  87. Wojnarowski, J.: 460th Anniversary of De Revolutionibus Orbium Coelestium. Int. J. Appl. Mech. Eng. 8(3), 359–363 (2003)

    MATH  Google Scholar 

  88. Wojnarowski, J.: Introduction to Mechatronics. State Vocational University of Applied Sciences, Nowy Sącz (in Polish) (2012)

    Google Scholar 

  89. Wojnarowski, J., Borowik, B.: Applying the Zigbee technology for the enhancing the remote objects control. In: PAMM: Proceedings in Applied Mathematics and Mechanics, pp. 679–682. WILEY‐VCH Verlag, Berlin (2009)

    Google Scholar 

  90. Ding, H., Cai, C.: Patent analysis and structural synthesis of epicyclic gear trains used in automatic transmissions. Appl. Sci. 10(1), 82 (2020)

    Article  Google Scholar 

  91. Du, M., Yang, L.: A basis for the computer-aided design of the topological structure of planetary gear trains. Mech. Mach. Theor. 145, 103690 (2020)

    Article  Google Scholar 

  92. Han, L., Liu, G., Yang, X., Han, B.: A computational synthesis approach of mechanical conceptual design based on graph theory and polynomial operation. Chin. J. Mech. Eng. 33(1), 2 (2020)

    Article  Google Scholar 

  93. Ho, T.-T., Hwang, S.-J.: Configuration synthesis of novel hybrid transmission systems using a combination of a Ravigneaux gear train and a simple planetary gear train. Energies 13(9), 2333 (2020)

    Article  Google Scholar 

  94. Yin, C., Tang, D., Deng, Z.: Research on configurations of multi-axis speed-differential mechanisms based on 2K-H gear train. Mech. Mach. Theor. 148, 103783 (2020)

    Article  Google Scholar 

  95. Drewniak, J., Zawiślak, S.: Kinematical and dynamical analysis of closed kinematic chains using graphs and contour equations. In: PAMM: Proceedings in Applied Mathematics and Mechanics, pp. 547–548. WILEY‐VCH Verlag, Berlin (2009)

    Google Scholar 

  96. Drewniak, J., Zawiślak, S.: Linear-graph and contour-graph-based models of planetary gears. J. Theor. Appl. Mech. 48, 415–433 (2010)

    Google Scholar 

  97. Drewniak, J., Zawiślak, S.: Comparison of graph-based methods of kinematical analysis of planetary gears. Acta Mech. et Automatica 4, 14–18 (2010)

    Google Scholar 

  98. Drewniak, J., Kopeć, J., Zawiślak, S.: Analysis of automatic automotive gear boxes by means of versatile graph-based methods. In: Advances in Mechanisms Design, pp. 81–86. Springer, Dordrecht (2012)

    Google Scholar 

  99. Drewniak, J., Zawiślak, S.: Graph-based models of compound planetary gear boxes. In: Solid State Phenomena, vol. 199, pp. 143–148. Trans Tech Publications Ltd. (2013)

    Google Scholar 

  100. Drewniak, J., Zawiślak, S., Wieczorek, A.: Modelling multi-way planetary gears by means of contour graphs. Solid State Phenom. 220, 126–131 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zawiślak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zawiślak, S., Kopeć, J. (2022). Professor Józef Wojnarowski—IFToMMist and Pioneer of Graphs’ Application in Mechanics in Poland. In: Zawiślak, S., Rysiński, J. (eds) Graph-Based Modelling in Science, Technology and Art. Mechanisms and Machine Science, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-030-76787-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76787-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76786-0

  • Online ISBN: 978-3-030-76787-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics