Skip to main content

Investigating Clinical Named Entity Recognition Approaches for Information Extraction from EMR

  • Chapter
  • First Online:
Tracking and Preventing Diseases with Artificial Intelligence

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 206))

Abstract

Electronic Medical Record (EMR) contains much information used in various applications, such as identifying similar patients, keeping track of follow-ups, etc. An essential feature of EMR is that it is rich in context and may lead to ambiguity during analysis if undetected in the initial stages and could result in wrong interpretation. The chapter includes a detailed literature review of recent clinical Named Entity techniques. The chapter demonstrates comparative results of Clinical Named Entity Classification using rule-based, deep learning-based, and hybrid approaches. The chapter expresses the efficacy of clinical Named Entity Recognition (NER) techniques for Information Extraction. Our experimentation validates state-of-art recitation about the high accuracy of combined Deep Learning (DL) models with a sequential model. The experiment appraises the need for improved clinical word embeddings for efficient entity identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahajan, P., Rana, D.P.: Text mining in healthcare. Int. J. Innov. Technol. Exploring Eng. (IJITEE) 9(2) (2019)

    Google Scholar 

  2. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, vol. 1 (2016)

    Google Scholar 

  3. Basaldella, M., Furrer, L., Tasso, C.: Entity recognition in the biomedical domain using a hybrid approach. J. Biomed. Semant. 8(51) (2017)

    Google Scholar 

  4. Xu, K., Zhou, Z., Gong, T.: SBLC: a hybrid model for disease named entity recognition based on semantic bidirectional LSTMs and conditional random fields. BMC Med. Inf. Decis. Mak. 18(114) (2018)

    Google Scholar 

  5. Ji, B., Liu, R., Li, S.: A hybrid approach for named entity recognition in Chinese electronic medical record. BMC Med. Inf. Decis. Mak. 19(64) (2019)

    Google Scholar 

  6. Goyal, A., Gupta, V., Kumar, M.: Recent named entity recognition and classification techniques: a systematic review. Comput. Sci. Rev. 29 (2018)

    Google Scholar 

  7. Shaalan, K.: Rule-based approach in Arabic natural language processing. Int. J. Inf. Commun. Technol. 3(3) (2010)

    Google Scholar 

  8. Li, Z., Liu, F., Antieau, L., Cao, Y., Yu, H.: Lancet: a high precision medication event extraction system for clinical. J. Am. Med. Inf. Assoc. 17(5) (2010)

    Google Scholar 

  9. Zhang, S., Elhadad, N.: Unsupervised biomedical named entity recognition: experiments with clinical and biological texts. J. Biomed. Inf. 46(6) (2013)

    Google Scholar 

  10. Munoz, O.M., Quimbaya, A.P., Sierra, A.: Named entity recognition over electronic health records through a combined dictionary-based approach. In: International Conference on Health and Social Care Information Systems and Technologies, vol. 100 (2016)

    Google Scholar 

  11. Rahem, K.R., Omar, N.: Rule-based named entity recognition for drug-related crime news documents. J. Theoret. Appl. Inf. Technol. 77(2) (2015)

    Google Scholar 

  12. Lim, E.H.Y., Liu, J.N.K., Lee, R.S.T.: Knowledge discovery from text learning for ontology modelling. In: Sixth International Conference on Fuzzy Systems and Knowledge Discovery, vol. 7, pp. 227–231 (2009). https://doi.org/10.1109/FSKD.2009.669

  13. Uzuner, Ö., Solti, I., Cadag, E.: Extracting medication information from clinical text. J. Am. Med. Inf. Assoc. 17(5) (2010)

    Google Scholar 

  14. Datla, V., Lin, K., Louwerse, M.: Capturing disease-symptom relations using higher-order co-occurrence algorithms. In: 2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops, Philadelphia, PA, pp. 816–821 (2012)

    Google Scholar 

  15. Pasca, M.: Weakly-supervised discovery of named entities using web search queries. In: CIKM’07, pp. 683–690 (2007)

    Google Scholar 

  16. Savova, G.K: Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J. Am. Med. Inf. Assoc. 17 (2010)

    Google Scholar 

  17. Chen, Y., Lasko, T.A., Mei, Q., Denny, J.C., Xu, H.: A study of active learning methods for named entity recognition in clinical text. J. Biomed. Inf. 58 (2015)

    Google Scholar 

  18. Wang, Y., Yu, Z., Chen, L., Chen, Y., Liu, Y., Hu, X., Jiang, Y.: Supervised methods for symptom name recognition in free-text clinical records of traditional Chinese medicine: an empirical study. J. Biomed. Inf. 47 (2014)

    Google Scholar 

  19. Li, J., Sun, A., Han, J., Li, C.: A survey on deep learning for named entity recognition. IEEE Trans. Knowl. Data Eng. (2020). https://doi.org/10.1109/TKDE.2020.2981314

    Article  Google Scholar 

  20. Funde, K., Kuffner, R., Zimmer, R.: RelEx—relation extraction using dependency parse trees. Bioinformatics 23(3) (2007)

    Google Scholar 

  21. Roberts, K., Rink, B., Harabagiu, S.: Extraction of medical concepts, assertions, and relations from discharge summaries for the fourth i2b2/va shared task. In: Proceedings of the 2010 i2b2/VA Workshop on Challenges in Natural Language Processing for Clinical Data, i2b2, Boston, MA, USA (2010)

    Google Scholar 

  22. Lin, J.C.-W., Shao, Y., Zhang, J., Yun, U.: Enhanced sequence labeling based on latent variable conditional random fields. Neuro Comput. 403, 431–440 (2020). https://doi.org/10.1016/j.neucom.2020.04.102

  23. Abulaish, M., Parwez, M.A., Jahiruddin: DiseaSE: a biomedical text analytics system for disease symptom extraction and characterization. J. Biomed. Inf. 100 (2019)

    Google Scholar 

  24. Lin, J.C.-W., Shao, Y., Djenouri, Y.: ASRNN: a recurrent neural network with an attention model for sequence labeling. Knowl. Based Syst. (2020) 106548, https://doi.org/10.1016/j.knosys.2020.106548

  25. Chiu, J.P.C., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs. Trans. Assoc. Comput. Linguist. 4, 357–370 (2016)

    Google Scholar 

  26. Hofer, M., Kormilitzin, A., Goldberg, P., Nevado, A.J.: Few-shot learning for named entity recognition in medical text (2018). arXiv preprint arXiv:1811.05468

  27. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF (2016). arXiv:1603.01354

  28. Keretna, S., Lim, C.P., Creighton, D.: A hybrid model for named entity recognition using unstructured medical text. In: 2014 9th International Conference on System of Systems Engineering (SOSE), Adelade, SA (2014)

    Google Scholar 

  29. Kormilitzin, A., Vaci, N., Liu, Q., Nevado-Holgado, A.: Med7: a transferable clinical natural language processing model for electronic health records (2020). ArXiv Prepr arXiv:2003.01271, 01271

  30. https://www.i2b2.org/NLP/DataSets/Main.php. Accessed June 2020

  31. Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. (2004). PubMed Central PMCID: PMC308795

    Google Scholar 

  32. https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html. Accessed June 2020

  33. Saad, F., Aras, H., Hackl-Sommer, R.: Improving named entity recognition for biomedical and patent data using bi-LSTM deep neural network models. In: Natural Language Processing and Information Systems, vol. 10 (2020)

    Google Scholar 

  34. Soysal, E., Wang, J., Jiang, M., Wu, Y., Pakhomov, S., Liu, H., Xu, H.: CLAMP—a toolkit for efficiently building customized clinical natural language processing pipeline. J. Am. Med. Inf. Assoc. 25(3) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahajan, P., Rana, D. (2022). Investigating Clinical Named Entity Recognition Approaches for Information Extraction from EMR. In: Mehta, M., Fournier-Viger, P., Patel, M., Lin, J.CW. (eds) Tracking and Preventing Diseases with Artificial Intelligence. Intelligent Systems Reference Library, vol 206. Springer, Cham. https://doi.org/10.1007/978-3-030-76732-7_7

Download citation

Publish with us

Policies and ethics