Skip to main content

Combining Deep Learning and Mathematical Morphology for Historical Map Segmentation

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2021)

Abstract

The digitization of historical maps enables the study of ancient, fragile, unique, and hardly accessible information sources. Main map features can be retrieved and tracked through the time for subsequent thematic analysis. The goal of this work is the vectorization step, i.e., the extraction of vector shapes of the objects of interest from raster images of maps. We are particularly interested in closed shape detection such as buildings, building blocks, gardens, rivers, etc. in order to monitor their temporal evolution. Historical map images present significant pattern recognition challenges. The extraction of closed shapes by using traditional Mathematical Morphology (MM) is highly challenging due to the overlapping of multiple map features and texts. Moreover, state-of-the-art Convolutional Neural Networks (CNN) are perfectly designed for content image filtering but provide no guarantee about closed shape detection. Also, the lack of textural and color information of historical maps makes it hard for CNN to detect shapes that are represented by only their boundaries. Our contribution is a pipeline that combines the strengths of CNN (efficient edge detection and filtering) and MM (guaranteed extraction of closed shapes) in order to achieve such a task. The evaluation of our approach on a public dataset shows its effectiveness for extracting the closed boundaries of objects in historical maps.

Extra material for this paper (full-size figures, results, code, dataset) available at: https://github.com/soduco/paper-dgmm2021.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angulo, J., Serra, J.: Mathematical morphology in color spaces applied to the analysis of cartographic images. In: Proceedings of GEOPRO, vol. 3, pp. 59–66 (2003)

    Google Scholar 

  2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intel. 33(5), 898–916 (2010)

    Article  Google Scholar 

  3. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Analy. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  4. Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation. In: Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 5221–5229 (2017)

    Google Scholar 

  5. Barcelos, I.B., et al.: Exploring hierarchy simplification for non-significant region removal. In: SIBGRAPI Conference on Graphics, Patterns and Images, pp. 100–107 (2019)

    Google Scholar 

  6. Beucher, S.: Watershed, hierarchical segmentation and waterfall algorithm. In: Serra, J., Soille, P. (eds.) Mathematical Morphology (ISMM), pp. 69–76. Springer, Dordrecht (1994)

    Google Scholar 

  7. Chen, K., et al.: Hybrid task cascade for instance segmentation. In: Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 4974–4983 (2019)

    Google Scholar 

  8. Chiang, Y.-Y., Leyk, S., Knoblock, C.A.: Efficient and robust graphics recognition from historical maps. In: Kwon, Y.-B., Ogier, J.-M. (eds.) GREC 2011. LNCS, vol. 7423, pp. 25–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36824-0_3

    Chapter  Google Scholar 

  9. Clough, J.R., Oksuz, I., Byrne, N., Schnabel, J.A., King, A.P.: Explicit topological priors for deep-learning based image segmentation using persistent homology. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 16–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_2

    Chapter  Google Scholar 

  10. Couprie, M., Najman, L., Bertrand, G.: Quasi-linear algorithms for the topological watershed. J. Math. Imaging Vis. 22(2–3), 231–249 (2005)

    Article  MathSciNet  Google Scholar 

  11. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: thinnings, shortest path forests, and topological watersheds. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 925–939 (2009)

    Article  Google Scholar 

  12. Dietzel, C., Herold, M., Hemphill, J.J., Clarke, K.C.: Spatio-temporal dynamics in California’s central valley: empirical links to urban theory. Int. J. Geogr. Inf. Sci. (IJGIS) 19(2), 175–195 (2005)

    Article  Google Scholar 

  13. Favreau, J., Lafarge, F., Bousseau, A., Auvolat, A.: Extracting geometric structures in images with delaunay point processes. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 837–850 (2020)

    Article  Google Scholar 

  14. Hanbury, A., Marcotegui, B.: Morphological segmentation on learned boundaries. Image Vis. Comput. 27(4), 480–488 (2009)

    Article  Google Scholar 

  15. He, J., Zhang, S., Yang, M., Shan, Y., Huang, T.: BDCN: bi-directional cascade network for perceptual edge detection. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  16. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 9404–9413 (2019)

    Google Scholar 

  17. Leyk, S., Boesch, R., Weibel, R.: Saliency and semantic processing: extracting forest cover from historical topographic maps. Pattern Recogn. 39(5), 953–968 (2006)

    Article  Google Scholar 

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  19. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of International Conference of Computer Vision (ICCV), vol. 2, pp. 416–423 (2001)

    Google Scholar 

  20. Meyer, F.: Topographic distance and watershed lines. Signal Process. 38(1), 113–125 (1994)

    Article  Google Scholar 

  21. Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., Salesin, D.: Diffusion curves: a vector representation for smooth-shaded images. ACM Trans. Graph. 27(3), 1–8 (2008)

    Article  Google Scholar 

  22. Perret, B., Cousty, J., Guimaraes, S.J.F., Maia, D.S.: Evaluation of hierarchical watersheds. IEEE Trans. Image Process. 27(4), 1676–1688 (2017)

    Article  MathSciNet  Google Scholar 

  23. Perret, B., Cousty, J., Guimarães, S.J.F., Kenmochi, Y., Najman, L.: Removing non-significant regions in hierarchical clustering and segmentation. Pattern Recogn. Lett. 128, 433–439 (2019)

    Article  Google Scholar 

  24. Perret, J., Gribaudi, M., Barthelemy, M.: Roads and cities of 18th century France. Sci. Data 2(1), 1–7 (2015)

    Article  Google Scholar 

  25. Préfecture de la Seine, service du Plan: Atlas des vingt arrondissements de Paris [1 vol. (3 pl., 16 pl. doubles), 68 cm]. Paris. L. Wuhrer. ARK: 73873/pf0000935524 (1925), Bibliothèque de l’Hôtel de Ville, Ville de Paris, Paris

    Google Scholar 

  26. Roerdink, J.B., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Informaticae 41(1, 2), 187–228 (2000)

    Google Scholar 

  27. Romera-Paredes, B., Torr, P.H.S.: Recurrent instance segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 312–329. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_19

    Chapter  Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Process. 4(8), 1153–1160 (1995)

    Article  Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  31. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  32. Xie, L., Qi, J., Pan, L., Wali, S.: Integrating deep convolutional neural networks with marker-controlled watershed for overlapping nuclei segmentation in histopathology images. Neurocomputing 376, 166–179 (2020)

    Article  Google Scholar 

  33. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 1395–1403 (2015)

    Google Scholar 

  34. Zhang, Z., et al.: Superedge grouping for object localization by combining appearance and shape informations. In: Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 3266–3273 (2012)

    Google Scholar 

  35. Zhu, S.C., Guo, C.E., Wang, Y., Xu, Z.: What are textons? Intl. J. Comput. Vis. 62(1–2), 121–143 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the French National Research Agency (ANR): Project SoDuCo, grant ANR-18-CE38-0013. We would also like to thank the anonymous reviewers for their valuable feedback. The authors are grateful to the Bibliothèque de l’Hôtel de Ville (BHdV) and the City of Paris for their support for giving us access to the raw map images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Carlinet, E., Chazalon, J., Mallet, C., Duménieu, B., Perret, J. (2021). Combining Deep Learning and Mathematical Morphology for Historical Map Segmentation. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2021. Lecture Notes in Computer Science(), vol 12708. Springer, Cham. https://doi.org/10.1007/978-3-030-76657-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76657-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76656-6

  • Online ISBN: 978-3-030-76657-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics