Skip to main content

Graph-Based M-tortuosity Estimation

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12708))

  • 645 Accesses

Abstract

The sinuosity of a porous microstructure may be quantified by geometric tortuosity characterization, namely the ratio of geodesic and euclidean distances. The assessment of geometric tortuosity, among other descriptors, is of importance for rigorous characterization of complex materials. This paper proposes a new way of calculation, based on a graph structure, of the topological descriptor M-tortuosity introduced in [3]. The original M-tortuosity descriptor is based on a geodesic distance computation algorithm. A pore network partition [7] method is used to extract pores and construct a graph from the void of a porous microstructure. Through this scheme, pores are the nodes, distances between pores are the arcs between nodes and the goal boils down to the determination of the shortest paths between nodes. Solving this on a graph requires a tree search formulation of the problem. Our results have shown a drastic time complexity decrease while preserving good agreement with the original results. The added value of our method consists in its simplicity of implementation and its reduced execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. “plug im!” an open access and customizable software for signal and image processing (2020). https://www.plugim.fr

  2. Borgefors, G.: Distance transformations in digital images. Comput. Vis. Graph. Image Process. 34(3), 344–371 (1986). https://doi.org/10.1016/S0734-189X(86)80047-0. http://www.sciencedirect.com/science/article/pii/S0734189X86800470

    Article  Google Scholar 

  3. Chaniot, J., Moreaud, M., Sorbier, L., Fournel, T., Becker, J.M.: Tortuosimetric operator for complex porous media characterization. Image Anal. Stereol. 38(1), 25–41 (2019). https://doi.org/10.5566/ias.2039. https://www.ias-iss.org/ojs/IAS/article/view/2039

    Article  MathSciNet  MATH  Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  5. Criminisi, A., Sharp, T., Rother, C., P’erez, P.: Geodesic image and video editing. ACM Trans. Graph. 29(5) (2010). https://doi.org/10.1145/1857907.1857910

  6. Ghanbarian, B., Hunt, A.G., Ewing, R.P., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77(5), 1461–1477 (2013). https://doi.org/10.2136/sssaj2012.0435. https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/sssaj2012.0435

    Article  Google Scholar 

  7. Hammoumi, A., Moreaud, M., Jolimaitre, E., Chevalier, T., Novikov, A., Klotz, M.: Efficient pore network extraction method based on the distance transform. In: Masrour, T., El Hassani, I., Cherrafi, A. (eds.) A2IA 2020. LNNS, vol. 144, pp. 1–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-53970-2_1

    Chapter  Google Scholar 

  8. Holzer, L., et al.: The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells. J. Mater. Sci. 48(7), 2934–2952 (2013). https://doi.org/10.1007/s10853-012-6968-z

    Article  Google Scholar 

  9. Keller, L.M., Holzer, L., Wepf, R., Gasser, P.: 3D geometry and topology of pore pathways in Opalinus clay: implications for mass transport. Appl. Clay Sci. 52(1), 85–95 (2011). https://doi.org/10.1016/j.clay.2011.02.003. http://www.sciencedirect.com/science/article/pii/S0169131711000573

    Article  Google Scholar 

  10. Lee, T., Kashyap, R., Chu, C.: Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP: Graph. Models Image Process. 56(6), 462–478 (1994). https://doi.org/10.1006/cgip.1994.1042. http://www.sciencedirect.com/science/article/pii/S104996528471042X

    Article  Google Scholar 

  11. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1974)

    MATH  Google Scholar 

  12. Moldrup, P., Olesen, T., Komatsu, T., Schjønning, P., Rolston, D.: Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases. Soil Sci. Soc. Am. J. 65(3), 613–623 (2001). https://doi.org/10.2136/sssaj2001.653613x. https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/sssaj2001.653613x

    Article  Google Scholar 

  13. Moreaud, M., Chaniot, J., Fournel, T., Becker, J.M., Sorbier, L.: Multi-scale stochastic morphological models for 3D complex microstructures. In: 2018 17th Workshop on Information Optics (WIO), pp. 1–3 (2018). https://doi.org/10.1109/WIO.2018.8643455

  14. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Inc., Cambridge (1983)

    Google Scholar 

  15. Xiong, Q., Baychev, T.G., Jivkov, A.P.: Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport. J. Contam. Hydrol. 192, 101–117 (2016). https://doi.org/10.1016/j.jconhyd.2016.07.002. http://www.sciencedirect.com/science/article/pii/S016977221630122X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Hammoumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hammoumi, A., Moreaud, M., Jolimaitre, E., Chevalier, T., Novikov, A., Klotz, M. (2021). Graph-Based M-tortuosity Estimation. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2021. Lecture Notes in Computer Science(), vol 12708. Springer, Cham. https://doi.org/10.1007/978-3-030-76657-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76657-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76656-6

  • Online ISBN: 978-3-030-76657-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics