Skip to main content

Palms in an ‘Omics’ Era

  • Chapter
  • First Online:
The Coconut Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 364 Accesses

Abstract

Palms, which belong to the family Arecaceae, are economically important plants next only to grasses and legumes. The science of omics in palms has witnessed considerable advances in the recent years. This chapter is a compilation of the developments in various fields of omics such as genomics, transcriptomics, proteomics, metabolomics, bioinformatics and phenomics of the palms with special reference to coconut, date palm and oil palm. Whole genome sequence resources are available only in a few of the economically important palm species. The chapter is presented under different sections in the order of abiotic stress, biotic stress, chloroplast and mitochondria, databases and web resources, evolution and phylogenomics, fruits and its parts, gender/sex determination, height/dwarfism, image analysis and other phenomics. A roadmap for future work and information of omics resources as available in the three major economic palms and related web resources are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al Mahmoud ME, Al Dous EK, Al Azwani EK, Malek JA (2012) DNA based assays to distinguish date palm (Arecaceae) gender. Am J Bot 99(1):7–10

    Article  Google Scholar 

  • Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, Al-Azwani EK, Chaluvadi S, Pontaroli AC, DeBarry J, Arondel V (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nature Biotechnol 29(6):521

    Article  CAS  Google Scholar 

  • Aljohi HA, Liu W, Lin Q, Zhao Y, Zeng J, Alamer A, Alanazi IO, Alawad AO, Al-Sadi AM, Hu S, Yu J (2016) Complete sequence and analysis of coconut palm (Cocos nucifera) mitochondrial genome. PLoS ONE 11(10):0163990

    Article  CAS  Google Scholar 

  • Al-Khayri JM, Ibraheem Y (2014) In vitro selection of abiotic stress tolerant date palm (Phoenix dactylifera L.): a review. Emir J Food Agr 26(11):921–933

    Google Scholar 

  • Al-Mssallem IS, Hu S, Zhang X, Lin Q, Liu W, Tan J, Yu X, Liu J, Pan L, Zhang T, Yu J (2013) Genome sequence of the date palm Phoenix dactylifera L. Nature Comm 4(1):1–9

    Google Scholar 

  • Anitha N, Jayaraj KL, Kumar EP, George J, Rajesh MK (2008) Assessment of cross-taxa utility of coconut microsatellite markers. Ind J Hortic 65(3): 317–321

    Google Scholar 

  • Al-Obaidi JR, Mohd-Yusuf Y, Razali N, Jayapalan JJ, Tey CC, Md-Noh N, Junit SM, Othman RY, Hashim OH (2014) Identification of proteins of altered abundance in oil palm infected with Ganoderma boninense. Int J Mol Sci 15(3):5175–5192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Sulaiman F, Hawwa M (2012) IC tomography and infrared tomography techniques to monitor defect sites in palm tree trunks. Adv Mat Res 445:1053–1057

    Google Scholar 

  • ArinkinV Digel I, Porst D, Artmann AT, Artmann GM (2014) Phenotyping date palm varieties via leaflet cross-sectional imaging and artificial neural network application. BMC Bioinformatics 15(1):55

    Article  Google Scholar 

  • Arroyo-Serralta GA, Zizumbo-Villareal D, Escalante Erosa F, Peña-Rodríguez LM (2012) Cuticular wax composition of coconut palms and their susceptibility to lethal yellowing disease. J Mex Chem Soc 56(1):67–71

    CAS  Google Scholar 

  • Arunachalam V (2011) Genomics of cultivated palms, p 114. Elsevier Inc

    Google Scholar 

  • Arunachalam V, Rajesh MK (2017) In: Ahuja MR, Jain SM (eds). Biodiversity and conservation of woody plants, pp 3–36. Springer International Publishing AG

    Google Scholar 

  • Arunachalam V, Jerard BA, Elangovan M, Ratnambal MJ, Dhanapal R, Rizal SK, Damodaran V (2001) Unexploited diversity in coconut palm (Cocos nucifera L.). Plant Genetic Resources Newslett 127:39–43

    Google Scholar 

  • Arunachalam V, Jerard BA, Apshara SE, Jayabose C, Subaharan K, Ravikumar N, Palaniswami C (2013) Digital phenotyping of coconut and morphological traits associated with eriophyid mite (Aceria guerreronis Keifer) infestation. J Plantatn Crops 41(3):417–424

    Google Scholar 

  • Arunachalam V, Rajesh MK, Jerard BA, Jayabose C, Sairam CV (2014) Characterization of a spicata mutant of coconut palm in India. J Plantatn Crops 41(3):417–424

    Google Scholar 

  • Azni INAM, Namasivayam P, Ling HC, Alwee SSRS, Abd Manaf MA (2014) Differentially expressed transcripts related to height in oil palm. J Oil Palm Res 26(4):308–316

    CAS  Google Scholar 

  • Babu K, Rani MKL, Sahu S, Mathur RK, Kumar N, Ravichandran G, Anitha P, Bhagya HP (2019) Development and validation of whole genome-wide and genic microsatellite markers in oil palm (Elaeis guineensis Jacq.): first microsatellite database (OpSatdb). Sci Rep 9(1):1899

    Google Scholar 

  • Bai KV, Kumar SN, Rajagopal V, Vijayakumar K (2008) Principal component analysis of chlorophyll fluorescence transients for tolerance to drought stress in coconut seedlings. Indian J Hortic 65(4):471–476

    Google Scholar 

  • Baker WJ, Asmussen CB, Barrow SC, Dransfield J, Hedderson TA (1999) A phylogenetic study of the palm family (Palmae) based on chloroplast DNA sequences from thetrnL—trnF region. Plant Syst Evol 219(1–2):111–126

    Article  CAS  Google Scholar 

  • Barrett CF, Davis JI, Leebens-Mack J, Conran JG, Stevenson DW (2013) Plastid genomes and deep relationships among the commelinid monocot angiosperms. Cladistics 29:65–87

    Article  PubMed  Google Scholar 

  • Barrett CF, Bacon CD, Antonelli A, Cano Á, Hofmann T (2016) An introduction to plant phylogenomics with a focus on palms. Bot J Linnean Soc 182(2):234–255

    Article  Google Scholar 

  • Barrett CF, McKain MR, Sinn BT, Ge XJ, Zhang Y, Antonelli A, Bacon CD (2019a) Ancient polyploidy and genome evolution in palms. Genome Biol Evol 11(5):1501–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett CF, Sinn BT, King LT, Medina JC, Bacon CD, Lahmeyer SC, Hodel DR (2019b) Phylogenomics, biogeography and evolution in the American genus Brahea (Arecaceae). Bot J Linnean Soc 190(3):242–259

    Article  Google Scholar 

  • Xiao Y, Xu P, Fan H, Baudouin, L., Xia W, Bocs S, Xu J, Li Q, Guo A, Zhou L, Li J (2017) The genome draft of coconut (Cocos nucifera L.). Giga Sci 6(11):095

    Google Scholar 

  • BaudouinL, Lebrun P, Konan JL, Ritter E, Berger A, Billotte N (2006) QTL analysis of fruit components in the progeny of a Rennell Island Tall coconut (Cocos nucifera L.) individual. Theor Appl Genet 112(2):258–268

    Google Scholar 

  • Baxter I, Ouzzani M, Orcun S, Kennedy B, Jandhyala SS, Salt DE (2007) Purdue ionomics information management system. An integrated functional genomics platform. Plant Physiol 143(2):600–611

    Google Scholar 

  • Beinaert A, Vanderweyen R (1941) Contribution à l’étudegénétiqueetbiométrique des variétésd’ Elaeis guineensis Jacq. Publications de l’Institut National pour l’étudeAgronomique du Congo Belge, sériescientifique, p 27

    Google Scholar 

  • Boonkaew T, Mongkolsiriwatana C, Vongvanrungruang A (2018) Characterization of GA20ox genes in tall and dwarf types coconut (Cocos nucifera L.). Genes Genomics 40(7):735–745

    Google Scholar 

  • Bourgis F, Kilaru A, Cao X, Ngando-Ebongue GF, Drira N, Ohlrogge JB, Arondel V (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. P Natl A Sci 108(30):12527–12532

    Article  CAS  Google Scholar 

  • Cha-Um S, Takabe T, Kirdmanee C (2010) Ion contents, relative electrolyte leakage, proline accumulation, photosynthetic abilities and growth characters of oil palm seedlings in response to salt stress. Pak J Bot 42(3):2091–2020

    Google Scholar 

  • Cherif E, Zehdi S, Castillo K, Chabrillange N, Abdoulkader S, Pintaud JC, Santoni S, Salhi-Hannachi A, Glémin S, Aberlenc-Bertossi F (2013) Male specific DNA markers provide genetic evidence of an XY chromosome system, a recombination arrest and allow the tracing of paternal lineages in date palm. New Phytol 197(2):409–415

    Article  CAS  PubMed  Google Scholar 

  • Colmsee C, Mascher M, Czauderna T, Hartmann A, Schlüter U, Zellerhoff N, Schmitz J, Bräutigam A, Pick TR, Alter P, Gahrtz M (2012) OPTIMAS-DW: a comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize. BMC Plant Biol 12(1):245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comer JR, Zomlefer WB, Barrett CF, Davis JI, Stevenson DW, Heyduk K, Leebens-Mack JH (2015) Resolving relationships within the palm subfamily Arecoideae (Arecaceae) using plastid sequences derived from next generation sequencing. Am J Bot 102(6):888–899

    Article  CAS  PubMed  Google Scholar 

  • Comer JR, Zomlefer WB, Barrett CF, Stevenson DW, Heyduk K, Leebens-Mack JH (2016) Nuclear phylogenomics of the palm subfamily Arecoideae (Arecaceae). Mol Phylogenetics Evol 97:32–42

    Article  Google Scholar 

  • Costa HB, Souza LM, Soprani LC, Oliveira BG, Ogawa EM, Korres AM, Ventura JA, Romão W (2015) Monitoring the physicochemical degradation of coconut water using ESI-FT-ICR MS. Food Chem 174:139–146

    Google Scholar 

  • Cui J, Davanture M, Zivy M, Lamade E, Tcherkez G (2019) Metabolic responses to potassium availability and waterlogging reshape respiration and carbon use efficiency in oil palm. New Phytol. https://doi.org/10.1111/nph.15751

    Article  PubMed  Google Scholar 

  • D’Amato, A., Fasoli, E., & Righetti, P. G. (2012). Harry Belafonte and the secret proteome of coconut milk. J. Proteomics, 75(3):914–920

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira HO, de Castro GLS, Correa LO, Silvestre WVD, do Nascimento SV, da Silva Valadares RB, de Oliveira GC, Santos RIN, Festucci-Buselli RA, Pinheiro HA (2019) Coupling physiological analysis with proteomic profile to understand the photosynthetic responses of young Euterpe oleracea palms to drought. Photosynth Res 140(2):189–205

    Article  PubMed  CAS  Google Scholar 

  • de Santana Lopes A, Pacheco TG, Nimz T, do Nascimento Vieira L, Guerra MP, Nodari RO, de Souza EM, de Oliveira Pedrosa F, Rogalski M (2018) The complete plastome of macaw palm [Acrocomia aculeata (Jacq.) Lodd.ex Mart.] and extensive molecular analyses of the evolution of plastid genes in Arecaceae. Planta 247(4):1011–1030

    Google Scholar 

  • del Valle JI, Guarín JR, Sierra CA (2014) Unambiguous and low-cost determination of growth rates and ages of tropical trees and palms. Radiocarbon 56(1):39–52

    Article  CAS  Google Scholar 

  • Dumhai R, Wanchana S, Saensuk C, Choowongkomon K, Mahatheeranont S, Kraithong T, Toojinda T, Vanavichit A, Arikit S (2019) Discovery of a novel CnAMADH2 allele associated with higher levels of 2-acetyl-1-pyrroline (2AP) in yellow dwarf coconut (Cocos nucifera L.). Sci Hortic 243:490–497

    Article  CAS  Google Scholar 

  • Dussert S, Guerin C, Andersson M, Joët T, Tranbarger TJ, Pizot M, Sarah G, Omore A, Durand-Gasselin T, Morcillo F (2013) Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. Plant Physiol 162(3):1337–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Rabey HA, Al-Malki AL, Abulnaja KO, Rohde W (2015) Proteome analysis for understanding abiotic stress (salinity and drought) tolerance in date palm (Phoenix dactylifera L.). Int J Genomics https://doi.org/10.1155/2015/407165

  • El Rabey HA, Al-Malki AL, Abulnaja KO (2016) Proteome analysis of Date Palm (Phoenix dactylifera L.) under severe drought and salt stress. Int J Genomics https://doi.org/10.1155/2016/7840759

  • Escalante Erosa F, Gamboa-León MR, Lecher JG, Arroyo-Serralta GA, Zizumbo-Villareal D, Oropeza-Salín C, Peña-Rodríguez LM (2002) Major components from the epicuticular wax of Cocos nucifera. Revista de la Sociedad Química de México 46(3):247–250

    Google Scholar 

  • Faleiro JR (2006) A review of the issues and management of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. Int J Trop Insect Sci 26(3):135–154

    CAS  Google Scholar 

  • Fang Y, Wu H, Zhang T, Yang M, Yin Y, Pan L, Yu X, Zhang X, Hu S, Al-Mssallem IS, Yu J (2012) A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome. PloS one 7(5):37164

    Google Scholar 

  • Farag MA, Mohsen M, Heinke R, Wessjohann LA (2014) Metabolomic fingerprints of 21 date palm fruit varieties from Egypt using UPLC/PDA/ESI–qTOF-MS and GC–MS analyzed by chemometrics. Food Res Int 64:218–226

    Article  CAS  PubMed  Google Scholar 

  • Giovino A, Bertolini E, Fileccia V, Al Hassan M, Labra M, Martinelli F (2015) Transcriptome analysis of Phoenix canariensis Chabaud in response to Rhynchophorus ferrugineus Olivier attacks. Front Plant Sci 6:817

    Article  PubMed  PubMed Central  Google Scholar 

  • Giovino A, Martinelli F, Saia S (2016) Rhynchophorus ferrugineus attack affects a group of compounds rather than rearranging Phoenix canariensis metabolic pathways. J Integr Plant Biol 58(4):388–396

    Article  CAS  PubMed  Google Scholar 

  • Giri S, Idle JR, Chen C, Zabriskie TM, Krausz KW, Gonzalez FJ (2006) A metabolomic approach to the metabolism of the areca nut alkaloids arecoline and arecaidine in the mouse. Chem Res Toxicol 19(6):818–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golomb O, Alchanatis V, Cohen Y, Levin N, Soroker V (2015) Detection of red palm weevil infected trees using thermal imaging. In: Stafford JV (Ed). Precision agriculture. Wageningen Academic Publishers, pp 643–650

    Google Scholar 

  • Gribaa A, Dardelle F, Lehner A, Rihouey C, Burel C, Ferchichi A, Driouich A, Mollet JC (2013) Effect of water deficit on the cell wall of the date palm (Phoenix dactylifera ‘D Negletnour’, Arecales) fruit during development. Plant, Cell Environ 36(5):1056–1070

    Article  CAS  Google Scholar 

  • Hamad I, AbdElgawad H, Al Jaouni S, Zinta G, Asard H, Hassan S, Hegab M, Hagagy N, Selim, S (2015) Metabolic analysis of various date palm fruit (Phoenix dactylifera L.) cultivars from Saudi Arabia to assess their nutritional quality. Molecules, 20(8):13620–13641

    Google Scholar 

  • Hamelin C, Sempere G, Jouffe V, Ruiz M (2012) TropGeneDB, the multi-tropical crop information system updated and extended. Nucleic Acids Res 41(1):1172–1175

    Article  CAS  Google Scholar 

  • Harun MH (1997) Proline accumulation in the leaves of water stressed oil palm (Elaeis guineensis Jacq.) seedlings. Elaeis 9(2):93–99

    Google Scholar 

  • Hassan H, Amiruddin MD, Weckwerth W, Ramli US (2019) Deciphering key proteins of oil palm (Elaeis guineensis Jacq.) fruit mesocarp development by proteomics and chemometrics. Electrophoresis 40(2):254–265

    Google Scholar 

  • He Z, Zhang Z, Guo W, Zhang Y, Zhou R, Shi S (2015) De novo assembly of coding sequences of the mangrove palm (Nypa fruticans) using RNA-Seq and discovery of whole-genome duplications in the ancestor of palms. PLoS ONE 10(12):0145385

    Article  Google Scholar 

  • Ho CL, Tan YC (2015) Molecular defense response of oil palm to Ganoderma infection

    Google Scholar 

  • Ho CL, Tan YC, Yeoh KA, Ghazali AK, Yee, WY, Hoh CC (2016) De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.). BMC Genom 17(1):1–19

    Google Scholar 

  • Hoffmann JF, Carvalho IR, Barbieri RL, Rombaldi CV, Chaves FC (2017) Butia spp. (Arecaceae) LC-MS-based metabolomics for species and geographical origin discrimination. J Agr Food Chem 65(2):523–532

    Google Scholar 

  • Huang YY, Matzke AJ, Matzke M (2013) Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera). PLoS ONE 8(8):74736

    Article  CAS  Google Scholar 

  • Huang YY, Lee CP, Fu JL, Chang BCH, Matzke AJ, Matzke M (2014) De novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation. G3: Genes, Genomes, Genetics 4(11):2147–2157

    Google Scholar 

  • Husri MN, Ong-Abdullah M (2018) Importance of KUP8 for K+ uptake in rooted plantlets of Elaeis guineensis under K+ sufficient conditions. South African J Bot 118:65–75

    Article  CAS  Google Scholar 

  • Ichinose M, Sugita M (2016) RNA editing and its molecular mechanism in plant organelles. Genes 8(1):5

    Article  PubMed Central  CAS  Google Scholar 

  • Izzuddin MA, Idris AS, Nisfariza NM, Ezzati B (2015) Spectral based analysis of airborne hyperspectral remote sensing image for detection of ganoderma disease in oil palm. In: Proceedings of 2015 international conference on biological and environmental science (BIOES 2015) Phuket, 1–3 Oct 2015, pp 13–20

    Google Scholar 

  • Jaiswal Y, Weber D, Yerke A, Xue Y, Lehman D, Williams T, Xiao T, Haddad D, Williams L (2019) A substitute variety for agronomically and medicinally important Sereno arepens (saw palmetto). Sci Rep 9(1):4709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia S, Zhang X, Zhang G, Yin A, Zhang S, Li F, Wang L, Zhao D, Yun Q, Wang J, Sun G (2013) Seasonally variable intestinal metagenomes of the red palm weevil (Rhynchophorus ferrugineus). Environ Microbiol 15(11):3020–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Lee M, Bai B, Sun Y, Qu J, Alfiko Y, Lim CH, Suwanto A, Sugiharti M, Wong L, Yue GH (2016) Draft genome sequence of an elite Dura palm and whole-genome patterns of DNA variation in oil palm. DNA Res 23(6):527–533

    Google Scholar 

  • Karthikeyan M, Radhika K, Mathiyazhagan S, Bhaskaran R, Samiyappan R, Velazhahan R (2006) Induction of phenolics and defense-related enzymes in coconut (Cocos nucifera L.) roots treated with biocontrol agents. Brazilian J Plant Physiol 18(3):367–377

    Google Scholar 

  • Karunaratne S, Santha S, Kovoor A (1991) An in vitro assay for drought-tolerant coconut germplasm. Euphytica 53(1):25–30

    Article  Google Scholar 

  • Khan A, Khan IA, Heinze B, Azim MK (2012) The chloroplast genome sequence of date palm (Phoenix dactylifera L. cv. ‘Aseel’). Plant Mol Biol Rep 30(3):666–678

    Google Scholar 

  • Kumar M, Moon UR, Mitra A (2012) Rapid separation of carotenes and evaluation of their in vitro antioxidant properties from ripened fruit waste of Areca catechu—a plantation crop of agro-industrial importance. Ind Crops Prod 40:204–209

    Article  CAS  Google Scholar 

  • Kumar M, Saini SS, Agrawal PK, Roy P, Sircar D (2021) Nutritional and metabolomics characterization of the coconut water at different nut developmental stages. J Food Compos Anal 96:103738

    Google Scholar 

  • Lantican DV, Strickler SR, Canama AO, Gardoce RR, Mueller LA, Galvez HF (2019) De novo genome sequence assembly of Dwarf Coconut (Cocos nucifera L.’Catigan Green Dwarf’) provides insights into genomic variation between coconut types and related palm species. G3: Genes Genomes Genet G3-400215. https://doi.org/10.1534/g3.119.400215

  • Lee M, Xia JH, Zou Z, Ye J, Alfiko Y, Jin J, Lieando JV, Purnamasari MI, Lim CH, Suwanto A, Wong L (2015) A consensus linkage map of oil palm and a major QTL for stem height. Sci Rep 5:8232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei X, Xiao Y, Xia W, Mason AS, Yang Y, Ma Z, Peng M (2014) RNA-seq analysis of oil palm under cold stress reveals a different C-repeat binding factor (CBF) mediated gene expression pattern in Elaeis guineensis compared to other species. PLoS ONE 9(12):

    Article  CAS  Google Scholar 

  • Leitch IJ, Beaulieu JM, Chase MW, Leitch AR, Fay MF (2010) Genome size dynamics and evolution in monocots. J Bot. https://doi.org/10.1155/2010/862516

    Article  Google Scholar 

  • Lewis CE, Doyle JJ (2001) Phylogenetic utility of the nuclear gene malate synthase in the palm family (Arecaceae). Mol Phylogenetics Evol 19(3):409–420

    Article  CAS  Google Scholar 

  • Li M, Li F, Yang F, Yin G, Gan S (2010) A male-specific SCAR marker in Calamus simplicifolius, a dioecious rattan species endemic to China. Mol Breed 25:549–551

    Article  CAS  Google Scholar 

  • Lieb VM, Schex R, Esquivel P, Jiménez VM, Schmarr HG, Carle R, Steingass CB (2019) Fatty acids and triacylglycerols in the mesocarp and kernel oils of maturing Costa Rican Acrocomia aculeata fruits. NFS J 14:6–13

    Article  Google Scholar 

  • Lima EBC, Sousa CNS, Meneses LN, Ximenes NC, Júnior S, Vasconcelos GS, Lima NBC, Patrocínio MCA, Macedo D, Vasconcelos SMM (2015) Cocos nucifera (L.) (Arecaceae): a phytochemical and pharmacological review. Brazilian J Med Biol Res 48(11):953–964

    Google Scholar 

  • Ma W, Kong Q, Arondel V, Kilaru A, Bates PD, Thrower NA, Benning C, Ohlrogge JB (2013) Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp. PLoS ONE 8(7):68887

    Article  CAS  Google Scholar 

  • Manimekalai R, Deeshma KP, Manju KP, Soumya VP, Sunaiba M, Nair S, Ananda KS (2012) Molecular marker-based genetic variability among Yellow Leaf Disease (YLD) resistant and susceptible arecanut (Areca catechu L.) genotypes. Indian J Hortic 69(4):455–461

    Google Scholar 

  • Manimekalai R, Nair S, Naganeeswaran A, Karun A, Malhotra S, Hubbali V (2018) Transcriptome sequencing and de novo assembly in arecanut, Areca catechu L elucidates the secondary metabolite pathway genes. Biotechnol Rep 17:63–69

    Article  Google Scholar 

  • Manju KP, Manimekalai R, Arunachalam V (2011) Microsatellites in palm (Arecaceae) sequences. Bioinformation 7(7):347

    Article  Google Scholar 

  • Manju KP, Manimekalai R, Naganeeswaran SA, Arunachalam V, Karun A (2016) Microsatellites mining in date palm (‘Phoenix dactylifera’ L.) and their cross transferability across ‘Arecaceae’ family. Plant Omics 9(3):191

    Google Scholar 

  • Marondedze C, Gehring C, Thomas L (2014) Dynamic changes in the date palm fruit proteome during development and ripening. Hortic Res 1:14039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathew LS, Spannagl M, Al-Malki A, George B, Torres MF, Al-Dous EK, Al-Azwani EK, Hussein E, Mathew S, Mayer KF, Mohamoud YA (2014) A first genetic map of date palm (Phoenix dactylifera) reveals long-range genome structure conservation in the palms. BMC Genom 15(1):285

    Article  CAS  Google Scholar 

  • Meerow AW, Krueger RR, Singh R, Low ETL, Ithnin M, Ooi LCL (2012) Coconut, date, and oil palm genomics. In: Schnell R, Priyadarshan P (eds) Genomics of tree crops. Springer, New York, NY, pp 299–351

    Chapter  Google Scholar 

  • Moonrungsee N, Peamaroon N, Boonmee A, Suwancharoen S, Jakmunee J (2018) Evaluation of tyrosinase inhibitory activity in Salak (Salacca zalacca) extracts using the digital image-based colorimetric method. Chem Pap 72(11):2729–2736

    Article  CAS  Google Scholar 

  • Moore D, Alexander L (1990) Resistance of coconuts in St. Lucia to attack by the coconut mite Eriophyes guerreronis Keifer. Trop Agr 67(1):33–36

    Google Scholar 

  • Mujer CV, Ramirez DA, Mendoza EMT (1984) α-d-galactosidase deficiency in coconut endosperm: its possible pleiotropic effects in makapuno. Phytochemistry 23(4):893–894

    Article  CAS  Google Scholar 

  • Murugesan P, Aswathy GM, Sunil Kumar K, Masilamani P, Kumar V, Ravi V (2017) Oil palm (Elaeis guineensis) genetic resources for abiotic stress tolerance: a review. Indian J Agr Sci 171:12–17

    Google Scholar 

  • Navia D, Gondim MGC, Aratchige NS, de Moraes GJ (2013) A review of the status of the coconut mite, Aceria guerreronis (Acari: Eriophyidae), a major tropical mite pest. Exp Appl Acarol 59(1–2):67–94

    Article  PubMed  Google Scholar 

  • Nejat N, Cahill DM, Vadamalai G, Ziemann M, Rookes J, Naderali N (2015) Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol Genet Genomics 290(5):1899–1910

    Article  CAS  PubMed  Google Scholar 

  • Neoh BK, Teh HF, Wong YC, Ooi TEK, Cheah SS, Appleton DR (2017) Study of oil palm photosynthesis using omics technologies. In: Abdullah S, Chai-Ling H, Wagstaff C (eds) Crop improvement. Springer, Cham, pp 27–46

    Chapter  Google Scholar 

  • Nguyen QT, Bandupriya HD, Foale M, Adkins SW (2016) Biology, propagation and utilization of elite coconut varieties (makapuno and aromatics). Plant Physiol Biochem 109:579–589

    Article  CAS  PubMed  Google Scholar 

  • Paul B, Rajesh MK, Kumar N (2010a) Bioinformatics approach towards mining of candidate genes for water stress in coconut. In: Thomas GV, Krishnakumar V, Jerard BA (eds) Improving productivity and profitability in coconut farming proceedings international conference on coconut biodiversity for prosperity, Central Plantation Crops Research Institute, Kasaragod, Kerala, India, pp 109–115

    Google Scholar 

  • Paul B, Rajesh MK, Kiran AG, Thomas GV, Kumar N (2010b) Differential expression of genes regulated in response to water stress in coconut. In: Thomas GV, Krishnakumar V, Jerard BA (eds) Improving productivity and profitability in coconut farming proceedings international conference on coconut biodiversity for prosperity, Central Plantation Crops Research Institute, Kasaragod, Kerala, India. pp 116–122

    Google Scholar 

  • Pereira S, Gravendeel B, Wijntjes P, Vos RA (2016) OrchID: a generalized framework for taxonomic classification of images using evolved artificial neural networks. BioRxiv, 070904

    Google Scholar 

  • Phoeurk C, Somana J, Sornwatana T, Udompaisarn S, Traewachiwiphak S, Sirichaiyakul P, Phongsak T, Arthan D (2018) Three novel mutations in α-galactosidase gene involving in galactomannan degradation in endosperm of curd coconut. Phytochemistry 156:33–42

    Article  CAS  PubMed  Google Scholar 

  • Pootakham W, Jomchai N, Ruang-areerate P, Shearman JR, Sonthirod C, Sangsrakru D, Tragoonrung S, Tangphatsornruang S (2015) Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics 105(5):288–295

    Article  CAS  PubMed  Google Scholar 

  • Premkrishnan BV, Arunachalam V (2012) In silico RAPD priming sites in expressed sequences and iSCAR markers for oil palm. Comp Funct Genomics. https://doi.org/10.1155/2012/913709

    Article  PubMed  PubMed Central  Google Scholar 

  • Purwoko D, Cartealy IC, Tajuddin T, Dinarti D, Sudarsono S (2019) SSR identification and marker development for sago palm based on NGS genome data. Breed Sci 69(1):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahul CU, Babu M, Hemalatha N, Rajesh MK (2015) Computational prediction of the secretome of Ganoderma lucidum. Int J Innovative Res Computer Commun Eng 3(7):275–280

    Google Scholar 

  • Rajesh MK, Jerard BA, Preethi P, Thomas RJ, Fayas TP, Rachana KE, Karun A (2013) Development of a RAPD-derived SCAR marker associated with tall-type palm trait in coconut. Sci Hortic 150:312–316

    Article  CAS  Google Scholar 

  • Rajesh MK, Rachana KE, Naganeeswaran SA, Shafeeq R, Thomas RJ, Shareefa M, Merin B, Anitha K (2015) Identification of expressed resistance gene analog sequences in coconut leaf transcriptome and their evolutionary analysis. Turk J Agr For 39(3):489–502

    Article  Google Scholar 

  • Rajesh MK, Fayas TP, Naganeeswaran S, Rachana KE, Bhavyashree U, Sajini KK, Karun A (2016a) De novo assembly and characterization of global transcriptome of coconut palm (Cocos nucifera L.) embryogenic calli using Illumina paired-end sequencing. Protoplasma 253(3):913–928.

    Google Scholar 

  • Rajesh MK, Sabana AA, Rachana KE, Rahman S, Ananda KS, Karun A (2016b) Development of a SCoT-derived SCAR marker associated with tall-type palm trait in arecanut and its utilization in hybrid (dwarf x tall) authentication. Indian J Genet Plant Breed 76(1):119–122

    Article  CAS  Google Scholar 

  • Rajesh MK, Rachana KE, Kulkarni K, Sahu BB, Thomas RJ, Karun A (2018) Comparative transcriptome profiling of healthy and diseased Chowghat Green Dwarf coconut palms from root (wilt) disease hot spots. European J Plant Pathol 151(1):173–193

    Google Scholar 

  • Rajesh MK, Gangaraj KP, Prabhudas SK, Prasad TK (2020a) The complete chloroplast genome data of Areca catechu (Arecaceae). Data Brief 33: https://doi.org/10.1016/j.dib.2020.106444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajesh MK, Chowdappa P, Behera SK, Kasaragod S, Gangaraj KP, Kotimoole CN, Nekrakalaya B, Mohanty V, Sampgod RB, Banerjee G, Das AJ, Niral V, Karun A, Mahato AK, Gaikwad K, Singh NK, Keshava Prasad TS (2020b) Assembly and annotation of the nuclear and organellar genomes of a dwarf coconut (Chowghat Green Dwarf) possessing enhanced disease resistance. OMICS: J Integr Biol 24(12):726–742

    Google Scholar 

  • Ramesh SV, Hebbar KB, Rajesh MK, Abhin SP, Gangaraj KP, Athul Bobby (2020). Transcriptome analysis of Cocos nucifera L., seedlings having contrasting water use efficiency (WUE) under water-deficit stress: molecular insights and genetic markers for drought tolerance. In: Proceedings of The 1st International Electronic Conference on Plant Science. https://doi.org/10.3390/IECPS2020-08853

  • Rance KA, Mayes S, Price Z, Jack PL, Corley RHV (2001) Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 103(8):1302–1310

    Google Scholar 

  • Rasool K, Khan M, Aldawood A, Tufail M, Mukhtar M, Takeda M (2015) Identification of proteins modulated in the date palm stem infested with red palm weevil (Rhynchophorus ferrugineus Oliv.) using two dimensional differential gel electrophoresis and mass spectrometry. Int J Mol Sci 16(8):19326–19346

    Google Scholar 

  • Rasool KG, KhanMA Tufail M, Husain M, Mehmood K, Mukhtar M, Takeda M, Aldawood AS (2018) Differential proteomic analysis of date palm leaves infested with the red palm weevil (Coleoptera: Curculionidae). Florida Entomologist 101(2):290–299

    Article  Google Scholar 

  • Riedel M, Riederer M, Becker D, Herran A, Kullaya A, Arana-López G, Peña-Rodríguez L, Billotte N, Sniady V, Rohde W, Ritter E (2009) Cuticular wax composition in Cocos nucifera L.: physicochemical analysis of wax components and mapping of their QTLs onto the coconut molecular linkage map. Tree Genet Genomes 5(1):53

    Google Scholar 

  • Riju A, Arunachalam V (2009) Data mining for simple sequence repeats in oil palm expressed sequence tags. Nature Precedings http://precedings.nature.com/documents/3581/version/1

  • Riju A, Chandrasekar A, Arunachalam V (2007) Mining for single nucleotide polymorphisms and insertions/deletions in expressed sequence tag libraries of oil palm. Bioinformation 2(4):128–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohman A, Che Man YB (2009) Monitoring of virgin coconut oil (VCO) adulteration with palm oil using Fourier transform infrared spectroscopy. J Food Lipids 16(4):618–628

    Article  CAS  Google Scholar 

  • Röser M, Johnson MAT, Hanson L (1997) Nuclear DNA amounts in palms (Arecaceae). Botanica Acta 110(1):79–89

    Article  Google Scholar 

  • Ruiz M, Sempéré G, Hamelin C (2017) Using TropGeneDB: a database containing data on molecular markers, QTLs, maps, genotypes, and phenotypes for tropical crops. In: van Dijk A (ed) Plant genomics databases. Methods in molecular biology, vol 1533. Humana Press, New York, NY

    Google Scholar 

  • Sabir JS, Arasappan D, Bahieldin A, Abo-Aba S, Bafeel S, Zari TA, Edris S, Shokry AM, Gadalla NO, Ramadan AM, Atef A (2014) Whole mitochondrial and plastid genome SNP analysis of nine date palm cultivars reveals plastid heteroplasmy and close phylogenetic relationships among cultivars. PLoS ONE 9(4):94158

    Article  CAS  Google Scholar 

  • Saensuk C, Wanchana S, Choowongkomon K, Wongpornchai S, Kraithong T, Imsabai W, Chaichoompu E, Ruanjaichon V, Toojinda T, Vanavichit A, Arikit S (2016) De novo transcriptome assembly and identification of the gene conferring a “pandan-like” aroma in coconut (Cocos nucifera L.). Plant Sci 252:324–334

    Article  CAS  PubMed  Google Scholar 

  • Sahu SK, Singh R, Kathiresan K (2016) Multi-gene phylogenetic analysis reveals the multiple origin and evolution of mangrove physiological traits through exaptation. Estuarine Coastal Shelf Sci 183:41–51

    Article  Google Scholar 

  • Sakulsathaporn A, Wonnapinij P, Vuttipongchaikij S, Apisitwanich S (2017) The complete chloroplast genome sequence of Asian Palmyra palm (Borassus flabellifer). BMC Res Notes 10(1):740

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanusi NS, Rosli R, Halim MA, Chan KL, Nagappan J, Azizi N, Amiruddin N, Tatarinova TV, Low ET (2018) PalmXplore: oil palm gene database. Database 2018:1–9. https://doi.org/10.1093/pcp/pcz237

  • Shalini KV, Manjunatha S, Lebrun P, Berger A, Baudouin L, Pirany N, Ranganath RM, Prasad DT (2007) Identification of molecular markers associated with mite resistance in coconut (Cocos nucifera L.). Genome 50(1):35–42

    Google Scholar 

  • Sharma P, Kothari SL, Rathore M, Gour V (2018) Properties, variations, roles, and potential applications of epicuticular wax: a review. Turk J Bot 42(2):135–149

    Article  CAS  Google Scholar 

  • Shelomi M, Lin SS, Liu LY. (2019) Transcriptome and microbiome of coconut rhinoceros beetle (Oryctes rhinoceros) larvae. BMC Genomics 20. https://doi.org/10.1186/s12864-019-6352-3

  • Singab AN, El-Taher EMM, Elgindi MR, Kassem MES (2015) Phoenix roebelenii O’Brien DNA profiling, bioactive constituents, antioxidant and hepatoprotective activities. Asian Pacific J Trop Dis 5(7):552–558

    Article  CAS  Google Scholar 

  • Singh R, Low ETL, Ooi LCL, Ong-Abdullah M, Ting NC, Nagappan J, Nookiah R, Amiruddin MD, Rosli R, Manaf MAA, Chan KL (2013a) The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 500(7462):340–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Ong-Abdullah M, Low ETL, Manaf MAA, Rosli R, Nookiah R, Ooi LCL, Ooi SE, Chan KL, Halim MA, Azizi N (2013b) Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature 500(7462):335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Low ETL, Ooi LCL, Ong-Abdullah M, Nookiah R, Ting NC, Marjuni M, Chan PL, Ithnin M, Manaf MAA, Nagappan J (2014) The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB. Nature Commun 5:4106

    Google Scholar 

  • Smith SA, Donoghue MJ (2008) Rates of molecular evolution are linked to life history in flowering plants. Sciences 322(5898):86–89

    Article  CAS  Google Scholar 

  • Somyong S, Poopear S, Jomchai N, Uthaipaisanwong P, Ruang-Areerate P, Sangsrakru D, Sonthirod C, Ukoskit K, Tragoonrung S, Tangphatsornruang S (2015) The AKR gene family and modifying sex ratios in palms through abiotic stress responsiveness. Funct Integr Genomics 15(3):349–362

    Article  CAS  PubMed  Google Scholar 

  • Somyong S, Poopear S, Sunner SK, Wanlayaporn K, Jomchai N, Yoocha T, Ukoskit K, Tangphatsornruang S, Tragoonrung S (2016) ACC oxidase and miRNA 159a, and their involvement in fresh fruit bunch yield (FFB) via sex ratio determination in oil palm. Mol Genet Genomics 291(3):1243–1257

    Article  CAS  PubMed  Google Scholar 

  • Somyong S, Walayaporn K, Jomchai N, Hassan SH, Yodyingyong T, Phumichai C, Limsrivilai A, Saklang A, Suvanalert S, Sonthirod C, Anggradita LD (2019) Identifying a DELLA gene as a height controlling gene in oil palm. Chiang Mai J Sci 46(1):32–45

    Google Scholar 

  • Suresh K, Nagamani C, Ramachandrudu K, Mathur RK (2010) Gas-exchange characteristics, leaf water potential and chlorophyll a fluorescence in oil palm (Elaeis guineensis Jacq.) seedlings under water stress and recovery. Photosynthetica 48(3):430–436

    Google Scholar 

  • Tan YA, Low KW, Lee CK, Low KS (2010) Imaging technique for quantification of oil palm fruit ripeness and oil content. Eur J Lipid Sci Tech 112(8):838–843

    Article  CAS  Google Scholar 

  • Tan YC, Yeoh KA, Wong MY, Ho CL (2013) Expression profiles of putative defence-related proteins in oil palm (Elaeis guineensis) colonized by Ganoderma boninense. J Plant Physiol 170:1455–1460

    Article  CAS  PubMed  Google Scholar 

  • Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS Online: a web-based platform to process untargeted metabolomic data. Anal Chem 84(11):5035–5039

    Google Scholar 

  • Tee SS, Tan YC, Abdullah F, Ong-Abdullah M, Ho CL (2013) Transcriptome of oil palm (Elaeis guineensis Jacq.) roots treated with Ganoderma boninense. Tree Genetics & Genomes 9(2):377–386

    Google Scholar 

  • Teh HF, Neoh BK, Hong MPL, Low JYS, Ng TLM, Ithnin N, Thang YM, Mohamed M, Chew FT, Yusof HM, Kulaveerasingam H (2013) Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp. PLoS ONE 8(4):61344

    Article  CAS  Google Scholar 

  • Teh HF, Neoh BK, Wong YC, Kwong QB, Ooi TEK, Ng TLM, Tiong SH, Low JYS, Danial AD, Ersad MA, Kulaveerasingam H (2014) Hormones, polyamines, and cell wall metabolism during oil palm fruit mesocarp development and ripening. J Agr Food Chem 62(32):8143–8152

    Article  CAS  Google Scholar 

  • Teh CK, Ong AL, Kwong QB, Apparow S, Chew FT, Mayes S, Mohamed M, Appleton D, Kulaveerasingam H (2016) Genome-wide association study identifies three key loci for high mesocarp oil content in perennial crop oil palm. Sci Rep 6:19075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theerawitaya C, Samphumphaung T, Cha-um S, Yamada N, Takabe T (2014) Responses of Nipa palm (Nypa fruticans) seedlings, a mangrove species, to salt stress in pot culture. Flora 209(10):597–603

    Article  Google Scholar 

  • Thomas T, Kumar SN, Cherian VK, Kasturi Bai KV, Rajagopal V (2006) Role of certain biochemical compounds in adaptation of coconut to different weather conditions—a study in two agro-climatic regions of India. Indian J Hortic 63(1):1–7

    Google Scholar 

  • Ting NC, Jansen J, Mayes S, Massawe F, Sambanthamurthi R, Ooi LCL, Chin CW, Arulandoo X, Seng TY, Alwee SSRS, Ithnin M (2014) High density SNP and SSR-based genetic maps of two independent oil palm hybrids. BMC Genom 15(1):309

    Article  Google Scholar 

  • Tranbarger TJ, Dussert S, Joët T, Argout X, Summo M, Champion A, Cros D, Omore A, Nouy B, Morcillo F (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156(2):564–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uthaipaisanwong P, Chanprasert J, Shearman JR, Sangsrakru D, Yoocha T, Jomchai N, Jantasuriyarat C, Tragoonrung S, Tangphatsornruang S (2012) Characterization of the chloroplast genome sequence of oil palm (Elaeis guineensis Jacq.). Gene 500(2):172–180

    Google Scholar 

  • Uthaipaisanwong P, Somyong S, Tangphatsornruang S, Yoocha T, Jantasuriyarat C (2017) Development and characterization of simple sequence repeats derived from mitochondrial genome of oil palm using next generation sequencing. Thai J Sci Tech 6(3):288–300

    Google Scholar 

  • Verma SK, Jasrotia RS, Iquebal MA, Jaiswal S, Angadi UB, Rai A, Kumar D (2017) Deciphering genes associated with root wilt disease of coconut and development of its transcriptomic database (CnTDB). Physiol Mol Plant P 100:255–263

    Google Scholar 

  • Wilson MA, Gaut B, Clegg MT (1990) Chloroplast DNA evolves slowly in the palm family (Arecaceae). Mol Biol Eevol 7(4):303–314

    CAS  Google Scholar 

  • Xiao W, Mason AS, Xiao Y, Liu Z, Yang Y, Lei X, Wu X, Ma Z, Peng M (2014a) Analysis of multiple transcriptomes of the African oil palm (Elaeis guineensis) to identify reference genes for RT-qPCR. J Biotechnol 184:63–73

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Zhou L, Xia W, Mason AS, Yang Y, Ma Z, Peng M (2014b) Exploiting transcriptome data for the development and characterization of gene-based SSR markers related to cold tolerance in oil palm (Elaeis guineensis). BMC Plant Biol 14:384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao Y, Xia W, Mason AS, Cao Z, Fan H, Zhang B, Zhang J, Ma Z, Peng M, Huang D (2019) Genetic control of fatty acid composition in coconut (Cocos nucifera), African oil palm (Elaeis guineensis), and date palm (Phoenix dactylifera). Planta 249(2):333–350

    Article  CAS  PubMed  Google Scholar 

  • Yaish MW (2015) Proline accumulation is a general response to abiotic stress in the date palm tree (Phoenix dactylifera L.). Genet Mol Res 14(3):9943–9950

    Google Scholar 

  • Yaish MW, Kumar PP (2015) Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Front Plant Sci 6:348

    Google Scholar 

  • Yamada N, Cha-Um S, Kageyama H, Promden W, Tanaka Y, Kirdmanee C, Takabe T (2011) Isolation and characterization of proline/betaine transporter gene from oil palm. Tree Physiol 31(4):462–468

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Gan SM, Yin GT, Xu HC (2005) Identification of random amplified polymorphic DNA markers linked to sex determination in Calamus simplicifolius C. F. Wei. J Integr Plant Biol 47:1249–1253

    Article  CAS  Google Scholar 

  • Yang M, Zhang X, Liu G, Yin Y, Chen K, Yun Q, Zhao D, Al-Mssallem IS, Yu J (2010) The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS ONE 5(9):12762. https://doi.org/10.1371/journal.pone.0012762

  • Yeap WC, Ooi TEK, Namasivayam P, Kulaveerasingam H, Ho CL (2012) EgRBP42 encoding an hnRNP-like RNA-binding protein from Elaeis guineensis Jacq. is responsive to abiotic stresses. Plant cell Rep 31(10):1829–1843

    Google Scholar 

  • Yin Y, Zhang X, Fang Y, Pan L, Sun G, Xin C, Abdullah MMB, Yu X, Hu S, Al-Mssallem IS, Yu J (2012) High-throughput sequencing-based gene profiling on multi-staged fruit development of date palm (Phoenix dactylifera L.). Plant Mol Biol 78(6):617–626

    Google Scholar 

  • Zhao H, Sun H, Li L, Lou Y, Li R, Qi L, Gao Z (2017) Transcriptome-based investigation of cirrus development and identifying microsatellite markers in rattan (Daemonorops jenkinsiana). Sci Rep 7:46107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuniga LC (1953) The probable inheritance of the makapuno character of the coconut. Philipp Agr 36:402–413

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Arunachalam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arunachalam, V. (2021). Palms in an ‘Omics’ Era. In: Rajesh, M.K., Ramesh, S.V., Perera, L., Kole, C. (eds) The Coconut Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-76649-8_7

Download citation

Publish with us

Policies and ethics