Skip to main content

Microstrip Antenna: An Overview and Its Performance Parameter

  • Chapter
  • First Online:
Smart Antennas

Abstract

Microstrip antennas are a class of planar antennas which have been researched and developed extensively in the last four decades. Due to their numerous advantages such as simple design, possible compact design, and lower cost, microstrip antennas are widely used in different fields of science and technology. As the size of these antennas directly depends on its resonance frequency wavelength, microstrip antenna is a popular choice for ultrahigh-frequency applications. In this chapter, a brief overview on microstrip antenna and its performance and design parameters is provided. A state-of-the-art literature review is also included to have an overall idea of the recent developments in this area and what to expect in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hertz, H.R.: Ueber sehr schnelle electrische Schwingungen. Ann. Phys. 267(7), 421–448 (1887)

    Article  MATH  Google Scholar 

  2. Deschamps, G.A.: Microstrip microwave antennas. In: Proceedings of the 3rd USAF Symposium on Antennas (1953)

    Google Scholar 

  3. Byron, E.V.: A new flush-mounted antenna element for phased array application. In: Proceedings of the Phased Array Antenna Symposium-1970, pp. 187–192 (1970)

    Google Scholar 

  4. Carver, K.R., Mink, J.W.: Microstrip antenna technology. IEEE Trans. Antennas Propag. 1(1), 2–24 (1981)

    Article  Google Scholar 

  5. Pozar, D.M.: Microstrip antennas. Proc. IEEE. 80(1), 79–91 (1992)

    Article  Google Scholar 

  6. Balanis, C.A.: Antenna theory: a review. Proc. IEEE. 80(1), 7–23 (1992)

    Article  Google Scholar 

  7. Ranjan, P.: A new approach for improving the bandwidth of microstrip patch antenna. In: 2nd International Conference on Micro-Electronics and Telecommunication Engineering, pp. 122–125 (2018)

    Google Scholar 

  8. Pozar, D.M.: Microstrip antennas. Proc. IEEE. 80(1), 79–91 (1992)

    Article  Google Scholar 

  9. Pozar, D.M., Kaufman, B.: Increasing the bandwidth of a microstrip antenna by proximity coupling. Electron. Lett. 23(8), 368–369 (1987)

    Article  Google Scholar 

  10. Pues, H.F., Van de Capelle, A.R.: Impedance-matching technique for increasing the bandwidth of microstrip antennas. IEEE Trans. Antennas Propag. 37(11), 1345–1354 (1989)

    Article  Google Scholar 

  11. Kamakshi, K., Singh, A., Aneesh, M., Ansari, J.A.: Novel design of microstrip antenna with improved bandwidth. Int. J. Microw. Sci. Technol. 2014, 659592, 7 pages (2014)

    Article  Google Scholar 

  12. Keskin, U., Döken, B., Kartal, M.: Bandwidth improvement in microstrip patch antenna. In: 8th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, pp. 215–219 (2017)

    Google Scholar 

  13. Deshmukh, A.A., Kumar, G.: Compact broadband U-slot-loaded rectangular microstrip antennas. Microw. Opt. Technol. Lett. 46(6), 556–559 (2005)

    Article  Google Scholar 

  14. Joshi, N.K., Upadhye, P.A.: Microstrip patch antenna with W-shape slot using dual dielectric substrates. In: 2019 2nd International Conference on Communication Engineering and Technology (ICCET), Nagoya, Japan, pp. 121–124 (2019)

    Google Scholar 

  15. Jolani, F., Dadgarpour, A.M., Hassani, H.R.: Compact M-slot folded patch antenna for WLAN. Prog. Electromagn. Res. Lett. 3, 35–42 (2008)

    Article  Google Scholar 

  16. Zaid, J., Farahani, M., Denidni, T.A.: Magneto-dielectric substrate-based microstrip antenna for RFID applications. IET Microw. Antenna Propag. 11(10), 1389–1392 (2017)

    Article  Google Scholar 

  17. Tao, L., Xu, J., Li, H., Hao, Y., Huang, S., Lei, M., Bi, K.: Bandwidth enhancement of microstrip patch antenna using complementary Rhombus resonator. Wirel. Commun. Mob. Comput. 2018, 6352181, 8 pages (2018)

    Article  Google Scholar 

  18. Mahesh, C.P., Shaikh, M.M., Sharon, M., Sharon, M.: Zinc nanoparticles loaded rectangular microstrip antenna for multiband operation. Int. J. Res. Appl. Sci. Eng. 6(5), 261–264 (2018)

    Google Scholar 

  19. Yuan, Y., Si, L.-M., Liu, Y., Lv, X.: Integrated log periodic antenna for Terahertz applications. In: International Conference on Microwave Technology and Computational Electromagnetics, pp. 276–279 (2009)

    Google Scholar 

  20. Azadegan, R., Sarabandi, K.: A novel approach for miniaturization of slot antennas. IEEE Trans. Antennas Propag. 51(3), 421–429 (2003)

    Article  Google Scholar 

  21. Wang, H., Huang, X.B., Fang, D.G., Han, G.B.: A microstrip antenna array formed by microstrip line fed tooth-like-slot patches. IEEE Trans. Antennas Propag. 55, 1210–1214 (2007)

    Article  Google Scholar 

  22. Sung, Y.: A printed wide-slot antenna with a modified L-shaped microstrip line for wideband applications. IEEE Trans. Antenna Propag. 59, 3918–3923 (2011)

    Article  Google Scholar 

  23. Sung, Y.: Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna with a parasitic center patch. IEEE Trans. Antennas Propag. 60, 1712–1217 (2012)

    Article  Google Scholar 

  24. Mekki, A.S., Hamidon, M.N., Ismail, A., Alhawari, A.R.H.: Gain enhancement of a microstrip Patch antenna using a reflecting layer. Int. J. Antenna Propag. 2015, 975263, 7 pages, (2015)

    Article  Google Scholar 

  25. Prahlada Rao, K., Vani, R.M., Hunagund, P.V.: Planar microstrip patch antenna array with gain enhancement. Procedia Comput. Sci. 143, 48–57 (2018)

    Article  Google Scholar 

  26. Saxena, S., Saxena, N.: Proximity coupled microstrip patch antenna for gain enhancement. In: 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM), Dehradun, India, pp. 423–426 (2020)

    Google Scholar 

  27. Mohanna, S., Farahbakhsh, A., Tavakoli, S., Ghassemi, N.: Reduction of mutual coupling and return loss in microstrip array antennas using concave rectangular patches. Int. J. Microw. Sci. Technol. 2010, 297519, 5 pages (2010)

    Article  Google Scholar 

  28. Khinda, J.S., Tripathy, M.R., Gambhir, D.: Improvement in depth of return loss of microstrip antenna for S-band applications. J. Circuits Syst. Comput. 27(4), 1850058 (2018)

    Article  Google Scholar 

  29. Nazari, M.E., Huang, W., Alavizadeh, Z.: Return loss-bandwidth evaluation for electrically small microstrip antennas. J. Electromag. Waves Appl. 34(16), 2220–2235 (2020)

    Article  Google Scholar 

  30. Kim, Y., Lee, G.-Y., Nam, S.: Efficiency enhancement of microstrip antenna by elevating radiating edges of patch. Electron. Lett. 39(19), 1363 (2003)

    Article  Google Scholar 

  31. Arya, A.K., Kartikeyan, M.V., Patnaik, A.: Efficiency enhancement of microstrip patch antenna with defected ground structure. In: 2008 International Conference on Recent Advances in Microwave Theory and Applications (2008)

    Google Scholar 

  32. Nahas, M.M., Nahas, M.: Bandwidth and efficiency Enhancement of rectangular patch antenna for SHF applications. Eng. Technol. Appl. Sci. Res. 9(6), 4962–4967 (2019)

    Article  Google Scholar 

  33. Kamakshi, K., Singh, A., Aneesh, M., Ansari, J.A.: Novel design of microstrip antenna with improved bandwidth. Int. J. Microw. Sci. Technol. 2014, 659592, 7 pages, (2014)

    Article  Google Scholar 

  34. Ahmed, Z., Yang, K., Evoy, P.M., Ammann, M.J.: Study of mm-wave microstrip patch array on curved substrate. In: Loughborough Antenna and Propagation Conference 2017 (LAPC ‘17), Loughborough, United Kingdom, November 13–14, 2017.

    Google Scholar 

  35. Hock, G.C., Tho, N.T.N., Charabarty, C.K., Kiong, T.S.: Design of patch antennas array at low frequency application by using unknown FR4 material. J. Adv. Res. Dyn. Control Syst. 11(7), 510–524 (2019)

    Google Scholar 

  36. Jiang, K., Guo, Q.G., Huang, K.M.: Design of a wideband quasi-Yagi microstrip antenna with bowtie active elements. In: 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, pp. 1122–1124 (2010)

    Google Scholar 

  37. Wang, H., Liu, S.-F., Li, W.-T., Shi, X.-W.: Design of a wideband planar microstrip-Fed Quasi-Yagi antenna. Prog. Electromagn. Res. Lett. 46, 19–24 (2014)

    Article  Google Scholar 

  38. Zhou, W., Lu, M.: Miniaturization of Quasi-Yagi antenna array with high gain using split-ring resonators. Int. J. Antenna Propag. 2020, 4915848, 12 pages, (2020)

    Article  Google Scholar 

  39. Le, T.T., Tran, H.H., Park, H.C.: Simple-structured dual-slot broadband circularly polarized antenna. IEEE Antenna Wirel. Propag. Lett. 17(3), 476–479 (2018)

    Article  Google Scholar 

  40. Kurra, L., Abegaonkar, M.P., Basu, A., Koul, S.K.: fss properties of a uniplanar ebg and its application in directivity enhancement of a microstrip antenna. IEEE Antenna Wirel. Propag. Lett. 15(1), 1606–1609 (2016)

    Article  Google Scholar 

  41. Abadi, S.M.A.M.H., Behdad, N.: Wideband linear-to-circular polarization converters based on miniaturized-element frequency selective surfaces. IEEE Trans. Antenna Propag. 64(2), 525–534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pirhadi, A., Bahrami, H., Nasri, J.: Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer. IEEE Trans. Antenna Propag. 60(4), 2101–2106 (2012)

    Article  Google Scholar 

  43. Godaymi, W.’i.A., Shaaban, R.M., Al-Tumah, Tahirand, A.S., Ahmed, Z.A.: Multi-forked microstrip patch antenna for broadband application. J. Phys. Conf. Ser. 1294, 022020 (2019)

    Article  Google Scholar 

  44. Ali, Z.J.: A printed microstrip patch antenna Design for ultra wideband applications. Int. J. Sci. Res. 3(4), 422–424 (2014)

    Google Scholar 

  45. Rashmitha, R., Niran, N., Jugale, A.A., Ahmed, M.R.: Microstrip patch antenna design for fixed mobile and satellite 5G communications. Procedia Comput. Sci. 171, 2073–2079 (2020)

    Article  Google Scholar 

  46. Tiwari, R., Sharma, R., Dubey, R.: Microstrip patch antenna array design analysis for 5G communication applications. Smart Moves J. Ijosci. 6(5), 1–5 (2020)

    Article  Google Scholar 

  47. Deif, S., Olokede, S.S., Nosrati, M., Daneshmand, M.: Stepped-impedance slotted microstrip-fed patch antenna for on-metal radio frequency identification applications. Microw. Opt. Technol. Lett. 62(10), 3324–3332 (2020)

    Article  Google Scholar 

  48. Sanskriti, T., Sakshi, K., Kumar, C.P.: Micro strip patch antenna for WLAN/WiMAX applications: a review. In: International Conference of Advance Research & Innovation (ICARI), January 19, 2020, 5 pages (2020)

    Google Scholar 

  49. Sumana, L., Florence, S.E.: Pattern reconfigurable microstrip patch antenna based on shape memory alloys for automobile applications. J. Electron. Mater. 49, 6598–6610 (September 2020)

    Article  Google Scholar 

  50. Urbani, F., Stollberg, D.W., Verma, A.: Experimental characterization of nanofilm microstrip antennas. IEEE Trans. Nanotechnol. 11(2), 406–411 (November 2011)

    Article  Google Scholar 

  51. Patil, R.R., Vani, R.M., Hunagund, P.V.: Design and simulation of nanotechnology based proximity coupled patch antenna at X-band. Int. J. Adv. Res. Comput. Commun. Eng. 2(9), 3344–3348 (2013)

    Google Scholar 

  52. Thabet, A., El Dein, A.Z., Hassan, A.: Design of compact microstrip antenna by using new nano-composite materials. In: The 4th IEEE International Nano Electronics Conference, pp. 1–2 (2011)

    Google Scholar 

  53. Matyas, J., Slobodian, P., Munster, L., Olejnik, R., Urbanek, P.: Microstrip antenna from silver nanoparticles printed on a flexible polymer substrate. Mater. Today Proc. 4, 5030–5038 (2017)

    Article  Google Scholar 

  54. Chaya Devi, K.S., Angadi, B., Mahesh, H.M.: Multiwalled carbon nanotube-based patch antenna for bandwidth enhancement. Mater. Sci. Eng. B. 224, 56–60 (2017)

    Article  Google Scholar 

  55. Dhasarathan, V., Bilakhiya, N., Parmar, J., Ladumor, M., Patel, S.K.: Numerical investigation of graphene-based metamaterial microstrip radiating structure. Mater. Res. Express. 7, 016203 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirendra Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, H., Sharma, M., Xu, Q. (2022). Microstrip Antenna: An Overview and Its Performance Parameter. In: Malik, P.K., Lu, J., Madhav, B.T.P., Kalkhambkar, G., Amit, S. (eds) Smart Antennas. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-76636-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76636-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76635-1

  • Online ISBN: 978-3-030-76636-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics