Skip to main content

Adenosine-to-Inosine RNA Editing: A Key RNA Processing Step Rewriting Transcriptome in Normal Physiology and Diseases

  • Chapter
  • First Online:
RNA Damage and Repair
  • 808 Accesses

Abstract

Adenosine-to-inosine (A-to-I) RNA editing is the most prevalent type of RNA modification in mammals and is catalyzed by adenosine deaminase acting on the RNA (ADAR) family of enzymes that recognize double-stranded (ds) RNAs. Inosine mimics guanosine in base pairing with cytidine, thereby A-to-I RNA editing alters dsRNA secondary structure. Inosine is also recognized as guanosine by splicing and translation machineries, resulting to mRNA alternative splicing and protein recoding. Therefore, A-to-I RNA editing is an important mechanism that causing and regulating “RNA mutations” in both normal physiology and diseases, such as cancers. In this chapter, we reviewed the regulatory mechanisms of A-to-I RNA editing, from regulation of ADAR enzymes to the involvement of ADAR-interacting secondary regulators. We also reviewed the roles of A-to-I RNA editing on miRNA-mediated gene silencing and RNA metabolism such as splicing, polyadenylation, and N 6-Methyladenosine methylation, as well as the functions in apoptosis, immunity, and circadian rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bahn JH et al (2015) Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways. Nat Commun 6:6355

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846

    Article  CAS  PubMed  Google Scholar 

  • Bavelloni A et al (2019) AKT-dependent phosphorylation of the adenosine deaminases ADAR-1 and-2 inhibits deaminase activity. FASEB J 33:9044–9061

    Article  CAS  PubMed  Google Scholar 

  • Beghini A et al (2000) RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. Hum Mol Genet 9:2297–2304

    Article  CAS  PubMed  Google Scholar 

  • Behm M, Wahlstedt H, Widmark A, Eriksson M, Öhman M (2017) Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J Cell Sci 130:745

    CAS  PubMed  Google Scholar 

  • Bentley DL (2014) Coupling mRNA processing with transcription in time and space. Nat Rev Genet 15:163–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brümmer A, Yang Y, Chan TW, Xiao X (2017) Structure-mediated modulation of mRNA abundance by A-to-I editing. Nat Commun 8:1255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cesarini V et al (2018) ADAR2/miR-589-3p axis controls glioblastoma cell migration/invasion. Nucleic Acids Res 46:2045–2059

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti A, Jha BK, Silverman RH (2011) New insights into the role of RNase L in innate immunity. J Interf Cytokine Res 31:49–57

    Article  CAS  Google Scholar 

  • Chan TH et al (2016) ADAR-mediated RNA editing predicts progression and prognosis of gastric cancer. Gastroenterology 151:637–650 e610

    Article  CAS  PubMed  Google Scholar 

  • Chen CX et al (2000) A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6:755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L et al (2013) Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat Med 19:209–216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen T et al (2015) ADAR1 is required for differentiation and neural induction by regulating microRNA processing in a catalytically independent manner. Cell Res 25:459–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YB et al (2017) ADAR2 functions as a tumor suppressor via editing IGFBP7 in esophageal squamous cell carcinoma. Int J Oncol 50:622–630

    Article  CAS  PubMed  Google Scholar 

  • Chen YT et al (2018) Tumor-associated intronic editing of HNRPLL generates a novel splicing variant linked to cell proliferation. J Biol Chem 293:10158–10171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho D-SC et al (2003) Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA. J Biol Chem 278:17093–17102

    Article  CAS  PubMed  Google Scholar 

  • Cho CJ et al (2018) Combinatory RNA-sequencing analyses reveal a dual mode of gene regulation by ADAR1 in gastric cancer. Dig Dis Sci 63:1835–1850

    Article  CAS  PubMed  Google Scholar 

  • Choudhury Y et al (2012) Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. J Clin Invest 122:4059–4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crow YJ, Manel N (2015) Aicardi-Goutieres syndrome and the type I interferonopathies. Nat Rev Immunol 15:429–440

    Article  CAS  PubMed  Google Scholar 

  • Desterro JM et al (2003) Dynamic association of RNA-editing enzymes with the nucleolus. J Cell Sci 116:1805–1818

    Article  CAS  PubMed  Google Scholar 

  • Desterro JM et al (2005) SUMO-1 modification alters ADAR1 editing activity. Mol Biol Cell 16:5115–5126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias Junior AG, Sampaio NG, Rehwinkel J (2019) A balancing act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol 27:75–85

    Article  CAS  PubMed  Google Scholar 

  • Doe CM et al (2009) Loss of the imprinted snoRNA mbii-52 leads to increased 5htr2c pre-RNA editing and altered 5HT2CR-mediated behaviour. Hum Mol Genet 18:2140–2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbarbary RA, Li W, Tian B, Maquat LE (2013) STAU1 binding 3' UTR IRAlus complements nuclear retention to protect cells from PKR-mediated translational shutdown. Genes Dev 27:1495–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flomen R, Knight J, Sham P, Kerwin R, Makoff A (2004) Evidence that RNA editing modulates splice site selection in the 5-HT2C receptor gene. Nucleic Acids Res 32:2113–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freund EC et al (2020) Unbiased identification of trans regulators of ADAR and A-to-I RNA editing. Cell Rep 31:107656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritz J et al (2009) RNA-regulated interaction of transportin-1 and exportin-5 with the double-stranded RNA-binding domain regulates nucleocytoplasmic shuttling of ADAR1. Mol Cell Biol 29:1487–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L et al (2017) RNA editing of SLC22A3 drives early tumor invasion and metastasis in familial esophageal cancer. Proc Natl Acad Sci U S A 114:E4631–E4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia MA, Meurs EF, Esteban M (2007) The dsRNA protein kinase PKR: virus and cell control. Biochimie 89:799–811

    Article  CAS  PubMed  Google Scholar 

  • Garncarz W, Tariq A, Handl C, Pusch O, Jantsch MF (2013) A high-throughput screen to identify enhancers of ADAR-mediated RNA-editing. RNA Biol 10:192–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George CX, Samuel CE (1999) Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc Natl Acad Sci 96:4621–4626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George CX, Samuel CE (2015) STAT2-dependent induction of RNA adenosine deaminase ADAR1 by type I interferon differs between mouse and human cells in the requirement for STAT1. Virology 485:363–370

    Article  CAS  PubMed  Google Scholar 

  • George CX, Das S, Samuel CE (2008) Organization of the mouse RNA-specific adenosine deaminase Adar1 gene 5′-region and demonstration of STAT1-independent, STAT2-dependent transcriptional activation by interferon. Virology 380:338–343

    Article  CAS  PubMed  Google Scholar 

  • Gerber A, O'Connell MA, Keller W (1997) Two forms of human double-stranded RNA-specific editase 1 (hRED1) generated by the insertion of an Alu cassette. RNA 3:453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg L, Abutbul-Amitai M, Paret G, Nevo-Caspi Y (2017) Alternative splicing of STAT3 is affected by RNA editing. DNA Cell Biol 36:367–376

    Article  CAS  PubMed  Google Scholar 

  • Han J et al (2020) Suppression of adenosine-to-inosine (A-to-I) RNA editome by death associated protein 3 (DAP3) promotes cancer progression. Sci Adv 6:eaba5136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartner JC, Walkley CR, Lu J, Orkin SH (2009) ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat Immunol 10:109–115

    Article  CAS  PubMed  Google Scholar 

  • Higuchi M et al (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75:1361–1370

    Article  CAS  PubMed  Google Scholar 

  • Hong H, Lin JS, Chen L (2015) Regulatory factors governing adenosine-to-inosine (A-to-I) RNA editing. Biosci Rep 35:e00182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hong H et al (2018) Bidirectional regulation of adenosine-to-inosine (A-to-I) RNA editing by DEAH box helicase 9 (DHX9) in cancer. Nucleic Acids Res

    Google Scholar 

  • Hsiao YE et al (2018) RNA editing in nascent RNA affects pre-mRNA splicing. Genome Res 28:812–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Q et al (2019) Hyper-editing of cell-cycle regulatory and tumor suppressor RNA promotes malignant progenitor propagation. Cancer Cell 35:81–94 e87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara Y, Zinshteyn B, Chendrimada TP, Shiekhattar R, Nishikura K (2007) RNA editing of the microRNA-151 precursor blocks cleavage by the dicer-TRBP complex. EMBO Rep 8:763–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamers MM, van den Hoogen BG, Haagmans BL (2019) ADAR1: “editor-in-chief” of cytoplasmic innate immunity. Front Immunol 10:1763–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lev-Maor G et al (2007) RNA-editing-mediated exon evolution. Genome Biol 8:R29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y et al (2017) Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. eLife 6

    Google Scholar 

  • Li L et al (2018) The landscape of miRNA editing in animals and its impact on miRNA biogenesis and targeting. Genome Res 28:132–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Nguyen TD, Nguyen TL, Nguyen TA (2020) Mismatched and wobble base pairs govern primary microRNA processing by human microprocessor. Nat Commun 11:1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liddicoat BJ et al (2015) RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349:1115–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas BA et al (2018) Evidence for convergent evolution of SINE-directed Staufen-mediated mRNA decay. Proc Natl Acad Sci U S A 115:968–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maas S, Gommans WM (2009) Identification of a selective nuclear import signal in adenosine deaminases acting on RNA. Nucleic Acids Res 37:5822–5829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macbeth MR et al (2005) Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science (New York, NY) 309:1534–1539

    Article  CAS  Google Scholar 

  • Mahajan SS, Thai KH, Chen K, Ziff E (2011) Exposure of neurons to excitotoxic levels of glutamate induces cleavage of the RNA editing enzyme, adenosine deaminase acting on RNA 2, and loss of GLUR2 editing. Neuroscience 189:305–315

    Article  CAS  PubMed  Google Scholar 

  • Mannion NM et al (2014) The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep 9:1482–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcucci R et al (2011) Pin1 and WWP2 regulate GluR2 Q/R site RNA editing by ADAR2 with opposing effects. EMBO J 30:4211–4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazloomian A, Meyer IM (2015) Genome-wide identification and characterization of tissue-specific RNA editing events in D. melanogaster and their potential role in regulating alternative splicing. RNA Biol 12:1391–1401

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakano M et al (2016) RNA editing modulates human hepatic aryl hydrocarbon receptor expression by creating MicroRNA recognition sequence. J Biol Chem 291:894–903

    Article  CAS  PubMed  Google Scholar 

  • Nakano M, Fukami T, Gotoh S, Nakajima M (2017) A-to-I RNA editing up-regulates human dihydrofolate reductase in breast cancer. J Biol Chem 292:4873–4884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemlich Y et al (2013) MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth. J Clin Invest 123:2703–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Y, Ding L, Kao PN, Braun R, Yang J-H (2005) ADAR1 interacts with NF90 through double-stranded RNA and regulates NF90-mediated gene expression independently of RNA editing. Mol Cell Biol 25:6956–6963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ota H et al (2013) ADAR1 forms a complex with dicer to promote microRNA processing and RNA-induced gene silencing. Cell 153:575–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park E, Maquat LE (2013) Staufen-mediated mRNA decay. Wiley Interdiscip Rev RNA 4:423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson JB, Samuel CE (1995) Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol 15:5376–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul D et al (2017) A-to-I editing in human miRNAs is enriched in seed sequence, influenced by sequence contexts and significantly hypoedited in glioblastoma multiforme. Sci Rep 7:2466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng PL et al (2006) ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron 49:719–733

    Article  CAS  PubMed  Google Scholar 

  • Pestal K et al (2015) Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43:933–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulsen H, Nilsson J, Damgaard CK, Egebjerg J, Kjems J (2001) CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol Cell Biol 21:7862–7871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulsen H et al (2006) Dimerization of ADAR2 is mediated by the double-stranded RNA binding domain. RNA 12:1350–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi L et al (2017) An RNA editing/dsRNA binding-independent gene regulatory mechanism of ADARs and its clinical implication in cancer. Nucleic Acids Res 45:10436–10451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quick-Cleveland J et al (2014) The DGCR8 RNA-binding heme domain recognizes primary microRNAs by clamping the hairpin. Cell Rep 7:1994–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinones-Valdez G et al (2019) Regulation of RNA editing by RNA-binding proteins in human cells. Commun Biol 2:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Rice GI et al (2012) Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat Genet 44:1243–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts JT et al (2018) ADAR mediated RNA editing modulates MicroRNA targeting in human breast Cancer. Processes (Basel) 6:42

    Article  CAS  Google Scholar 

  • Roignant JY, Soller M (2017) m(6)A in mRNA: an ancient mechanism for fine-tuning gene expression. Trends Genet 33:380–390

    Article  CAS  PubMed  Google Scholar 

  • Rueter SM, Dawson TR, Emeson RB (1999) Regulation of alternative splicing by RNA editing. Nature 399:75

    Article  CAS  PubMed  Google Scholar 

  • Sakurai M et al (2017) ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay. Nat Struct Mol Biol 24:534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansam CL, Wells KS, Emeson RB (2003) Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proc Natl Acad Sci 100:14018–14023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapiro AL et al (2020) Zinc finger RNA-binding protein Zn72D regulates ADAR-mediated RNA editing in neurons. Cell Rep 31:107654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugam R et al (2018) SRSF9 selectively represses ADAR2-mediated editing of brain-specific sites in primates. Nucleic Acids Res 46:7379–7395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimokawa T et al (2013) RNA editing of the GLI1 transcription factor modulates the output of hedgehog signaling. RNA Biol 10:321–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoshan E et al (2015) Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat Cell Biol 17:311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon O et al (2013) Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR). RNA 19:591–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y et al (2020) RNA editing mediates the functional switch of COPA in a novel mechanism of hepatocarcinogenesis. J Hepatol 74(1):135–147

    Article  PubMed  CAS  Google Scholar 

  • Soundararajan R et al (2015) Detection of canonical A-to-G editing events at 3' UTRs and microRNA target sites in human lungs using next-generation sequencing. Oncotarget 6:35726–35736

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18:164–179

    Article  CAS  PubMed  Google Scholar 

  • Tan MH et al (2017) Dynamic landscape and regulation of RNA editing in mammals. Nature 550:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang SJ et al (2020) Cis- and trans-regulations of pre-mRNA splicing by RNA editing enzymes influence cancer development. Nat Commun 11:799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tariq A et al (2013) RNA-interacting proteins act as site-specific repressors of ADAR2-mediated RNA editing and fluctuate upon neuronal stimulation. Nucleic Acids Res 41:2581–2593

    Article  CAS  PubMed  Google Scholar 

  • Terajima H et al (2017) ADARB1 catalyzes circadian A-to-I editing and regulates RNA rhythm. Nat Genet 49:146–151

    Article  CAS  PubMed  Google Scholar 

  • Tomaselli S et al (2015) Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma. Genome Biol 16:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tran SS et al (2019) Widespread RNA editing dysregulation in brains from autistic individuals. Nat Neurosci 22:25–36

    Article  CAS  PubMed  Google Scholar 

  • Vik ES et al (2013) Endonuclease V cleaves at inosines in RNA. Nat Commun 4:2271

    Article  PubMed  CAS  Google Scholar 

  • Visvanathan A, Patil V, Abdulla S, Hoheisel JD, Somasundaram K (2019) N(6)-Methyladenosine landscape of Glioma stem-like cells: METTL3 is essential for the expression of actively transcribed genes and sustenance of the oncogenic signaling. Genes (Basel) 10

    Google Scholar 

  • Vitali P, Scadden AD (2010) Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nat Struct Mol Biol 17:1043–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitali P et al (2005) ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J Cell Biol 169:745–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Schantz M, Archer SN (2003) Clocks, genes and sleep. J R Soc Med 96:486–489

    Article  Google Scholar 

  • Wang X et al (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120

    Article  PubMed  CAS  Google Scholar 

  • Wang X et al (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler R et al (2019) m(6)A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol 20:173–182

    Article  CAS  PubMed  Google Scholar 

  • Wong SK, Sato S, Lazinski DW (2003) Elevated activity of the large form of ADAR1 in vivo: very efficient RNA editing occurs in the cytoplasm. RNA 9:586–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang JF et al (2018) N(6)-methyladenosines modulate A-to-I RNA editing. Mol Cell 69:126–135 e126

    Article  CAS  PubMed  Google Scholar 

  • Yanai M et al (2020) ADAR2 is involved in self and nonself recognition of Borna disease virus genomic RNA in the nucleus. J Virol 94:e01513–e01519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W et al (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13–21

    Article  CAS  PubMed  Google Scholar 

  • Yang L et al (2012) c-Jun amino-terminal kinase-1 mediates glucose-responsive upregulation of the RNA editing enzyme ADAR2 in pancreatic beta-cells. PLoS One 7:e48611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CC et al (2017) ADAR1-mediated 3' UTR editing and expression control of antiapoptosis genes fine-tunes cellular apoptosis response. Cell Death Dis 8:e2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarnack K et al (2013) Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152:453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yang CS, Varelas X, Monti S (2016) Altered RNA editing in 3' UTR perturbs microRNA-mediated regulation of oncogenes and tumor-suppressors. Sci Rep 6:23226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Qian H, Xu J, Gao W (2019) ADAR, the carcinogenesis mechanisms of ADAR and related clinical applications. Ann Transl Med 7:686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y et al (2018) Molecular mechanisms for CFIm-mediated regulation of mRNA alternative polyadenylation. Mol Cell 69:62–74 e64

    Article  CAS  PubMed  Google Scholar 

  • Zipeto MA et al (2016) ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis. Cell Stem Cell 19:177–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Han or Sze Jing Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pitcheshwar, P., Shen, H., Han, J., Tang, S.J. (2021). Adenosine-to-Inosine RNA Editing: A Key RNA Processing Step Rewriting Transcriptome in Normal Physiology and Diseases. In: Kotta-Loizou, I. (eds) RNA Damage and Repair. Springer, Cham. https://doi.org/10.1007/978-3-030-76571-2_7

Download citation

Publish with us

Policies and ethics