Skip to main content

The Role of Ribonucleases in RNA Damage, Inactivation and Degradation

  • Chapter
  • First Online:
RNA Damage and Repair
  • 770 Accesses

Abstract

Nucleic acids are universally present in all forms of life on earth. Since their discovery more than 150 years ago, knowledge on the roles of nucleic acids, both DNA and RNA, has been gradually evolving. RNA, the less stable of the two, is a molecule capable of a wide range of functions, such as transmission of information, catalysis and regulation of gene expression among many others. The prevalence and diverse functions of RNA underlie the need for its regulation. As such, cells possess an arsenal of regulatory tools which modulate RNA. In this review, we focus on the role of ribonucleases acting specifically against damaged host RNA, pro-inflammatory messenger RNA and foreign RNA as part of defence mechanisms employed by mammalian cells against invading viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aas PA, Otterlei M, Falnes PO, Vågbø CB, Skorpen F, Akbari M, Sundheim O, Bjørås M, Slupphaug G, Seeberg E, Krokan HE (2003) Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421(6925)

    Google Scholar 

  • Alemasova EE, Lavrik OI (2019) Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res 47(8)

    Google Scholar 

  • Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E, Tollervey D (1999) Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18(19)

    Google Scholar 

  • Allmang C, Mitchell P, Petfalski E, Tollervey D (2000) Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Res 28(8)

    Google Scholar 

  • Anantharaman V, Aravind L (2006) The NYN domains: novel predicted RNAses with a PIN domain-like fold. RNA Biol 3(1)

    Google Scholar 

  • Anderson JS, Parker RP (1998) The 3' to 5' degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3' to 5' exonucleases of the exosome complex. EMBO J 17(5)

    Google Scholar 

  • Barrick D, Ferreiro DU, Komives EA (2008) Folding landscapes of ankyrin repeat proteins: experiments meet theory. Curr Opin Struct Biol 18(1)

    Google Scholar 

  • Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li GW, Zhou S, King D, Shen PS, Weibezahn J, Dunn JG, Rouskin S, Inada T, Frost A, Weissman JS (2012) A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151(5)

    Google Scholar 

  • Braun JE, Truffault V, Boland A, Huntzinger E, Chang CT, Haas G, Weichenrieder O, Coles M, Izaurralde E (2012) A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5' exonucleolytic degradation. Nat Struct Mol Biol 19(12)

    Google Scholar 

  • Burroughs AM, Aravind L (2016) RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Res 44(18)

    Google Scholar 

  • Castagnoli L, Mandaliti W, Nepravishta R, Valentini E, Mattioni A, Procopio R, Iannuccelli M, Polo S, Paci M, Cesareni G, Santonico E (2019) Selectivity of the CUBAN domain in the recognition of ubiquitin and NEDD8. FEBS J 286(4)

    Google Scholar 

  • Chakrabarti A, Jha BK, Silverman RH (2011) New insights into the role of RNase L in innate immunity. J Interf Cytokine Res 31(1)

    Google Scholar 

  • Chang JH, Xiang S, Xiang K, Manley JL, Tong L (2011) Structural and biochemical studies of the 5'→3' exoribonuclease Xrn1. Nat Struct Mol Biol 18(3)

    Google Scholar 

  • Chang CT, Muthukumar S, Weber R, Levdansky Y, Chen Y, Bhandari D, Igreja C, Wohlbold L, Valkov E, Izaurralde E (2019) A low-complexity region in human XRN1 directly recruits deadenylation and decapping factors in 5'-3' messenger RNA decay. Nucleic Acids Res 47(17)

    Google Scholar 

  • Chen G, Guo X, Lv F, Xu Y, Gao G (2008) p72 DEAD box RNA helicase is required for optimal function of the zinc-finger antiviral protein. Proc Natl Acad Sci USA 105(11)

    Google Scholar 

  • Choi UY, Kang JS, Hwang YS, Kim YJ (2015) Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases. Exp Mol Med 47(3)

    Google Scholar 

  • Clemens MJ, Williams BR (1978) Inhibition of cell-free protein synthesis by pppA2'p5'A2'p5'A: a novel oligonucleotide synthesized by interferon-treated L cell extracts. Cell 13(3)

    Google Scholar 

  • Coller J, Parker R (2004) Eukaryotic mRNA decapping. Annu Rev Biochem 73

    Google Scholar 

  • Cooper DA, Jha BK, Silverman RH, Hesselberth JR, Barton DJ (2014) Ribonuclease L and metal-ion-independent endoribonuclease cleavage sites in host and viral RNAs. Nucleic Acids Res 42(8)

    Google Scholar 

  • Cui X, Mino T, Yoshinaga M, Nakatsuka Y, Hia F, Yamasoba D, Tsujimura T, Tomonaga K, Suzuki Y, Uehata T, Takeuchi O (2017) Regnase-1 and Roquin nonredundantly regulate Th1 differentiation causing cardiac inflammation and fibrosis. J Immunol (Baltimore, MD, 1950) 199(12)

    Google Scholar 

  • D’Orazio KN, Wu CC, Sinha N, Loll-Krippleber R, Brown GW, Green R (2019) The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during No Go decay. eLife 8

    Google Scholar 

  • Davidson L, Francis L, Cordiner RA, Eaton JD, Estell C, Macias S, Cáceres JF, West S (2019) Rapid depletion of DIS3, EXOSC10, or XRN2 reveals the immediate impact of exoribonucleolysis on nuclear RNA metabolism and transcriptional control. Cell Rep 26(10)

    Google Scholar 

  • de la Cruz J, Kressler D, Tollervey D, Linder P (1998) Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3' end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO J 17(4)

    Google Scholar 

  • Delviks-Frankenberry KA, Desimmie BA, Pathak VK (2020) Structural insights into APOBEC3-mediated lentiviral restriction. Viruses 12(6)

    Google Scholar 

  • Ding Q, Zhu H, Zhang B, Soriano A, Burns R, Markesbery WR (2012) Increased 5S rRNA oxidation in Alzheimer’s disease. J Alzheimer’s Dis 29(1)

    Google Scholar 

  • Doma MK, Parker R (2006) Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440(7083)

    Google Scholar 

  • Dong B, Xu L, Zhou A, Hassel BA, Lee X, Torrence PF, Silverman RH (1994) Intrinsic molecular activities of the interferon-induced 2-5A-dependent RNase. J Biol Chem 269(19)

    Google Scholar 

  • Dong B, Niwa M, Walter P, Silverman RH (2001) Basis for regulated RNA cleavage by functional analysis of RNase L and Ire1p. RNA (New York, NY) 7(3)

    Google Scholar 

  • Dziembowski A, Lorentzen E, Conti E, Séraphin B (2007) A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14(1)

    Google Scholar 

  • Ficarelli M, Wilson H, Pedro Galão R, Mazzon M, Antzin-Anduetza I, Marsh M, Neil SJ, Swanson CM (2019) KHNYN is essential for the zinc finger antiviral protein (ZAP) to restrict HIV-1 containing clustered CpG dinucleotides. eLife 8

    Google Scholar 

  • Ficarelli M, Antzin-Anduetza I, Hugh-White R, Firth AE, Sertkaya H, Wilson H, Neil SJD, Schulz R, Swanson CM (2020) CpG dinucleotides inhibit HIV-1 replication through zinc finger antiviral protein (ZAP)-dependent and -independent mechanisms. J Virol 94(6)

    Google Scholar 

  • Fimognari C (2015) Role of oxidative RNA damage in chronic-degenerative diseases. Oxid Med Cell Longev 2015

    Google Scholar 

  • Floyd-Smith G, Slattery E, Lengyel P (1981) Interferon action: RNA cleavage pattern of a (2'-5')oligoadenylate-dependent endonuclease. Science (New York, NY) 212(4498)

    Google Scholar 

  • Garshott DM, Sundaramoorthy E, Leonard M, Bennett EJ (2020) Distinct regulatory ribosomal ubiquitylation events are reversible and hierarchically organized. eLife 9

    Google Scholar 

  • Ghosh A, Sarkar SN, Guo W, Bandyopadhyay S, Sen GC (1997) Enzymatic activity of 2'-5'-oligoadenylate synthetase is impaired by specific mutations that affect oligomerization of the protein. J Biol Chem 272(52)

    Google Scholar 

  • Gitlin AD, Heger K, Schubert AF, Reja R, Yan D, Pham VC, Suto E, Zhang J, Kwon YC, Freund EC, Kang J, Pham A, Caothien R, Bacarro N, Hinkle T, Xu M, McKenzie BS, Haley B, Lee WP, Lill JR, Roose-Girma M, Dohse M, Webster JD, Newton K, Dixit VM (2020) Integration of innate immune signalling by caspase-8 cleavage of N4BP1. Nature 587(7833)

    Google Scholar 

  • Glover ML, Burroughs AM, Monem PC, Egelhofer TA, Pule MN, Aravind L, Arribere JA (2020) NONU-1 encodes a conserved endonuclease required for mRNA translation surveillance. Cell Rep 30(13)

    Google Scholar 

  • Goodier JL, Pereira GC, Cheung LE, Rose RJ, Kazazian HH (2015) The broad-spectrum antiviral protein ZAP restricts human retrotransposition. PLoS Genet 11(5)

    Google Scholar 

  • Graille M, Seraphin B (2012) Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nat Rev Mol Cell Biol:727–735

    Google Scholar 

  • Grishin NV (2001) KH domain: one motif, two folds. Nucleic Acids Res 29(3)

    Google Scholar 

  • Guo X, Ma J, Sun J, Gao G (2007) The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci USA 104(1)

    Google Scholar 

  • Han JQ, Barton DJ (2002) Activation and evasion of the antiviral 2'-5' oligoadenylate synthetase/ribonuclease L pathway by hepatitis C virus mRNA. RNA (New York, NY) 8(4)

    Google Scholar 

  • Han P, Shichino Y, Schneider-Poetsch T, Mito M, Hashimoto S, Udagawa T, Kohno K, Yoshida M, Mishima Y, Inada T, Iwasaki S (2020) Genome-wide survey of ribosome collision. Cell Rep 31(5)

    Google Scholar 

  • Hashimoto S, Sugiyama T, Yamazaki R, Nobuta R, Inada T (2020) Identification of a novel trigger complex that facilitates ribosome-associated quality control in mammalian cells. Sci Rep 10(1)

    Google Scholar 

  • Hayakawa H, Uchiumi T, Fukuda T, Ashizuka M, Kohno K, Kuwano M, Sekiguchi M (2002) Binding capacity of human YB-1 protein for RNA containing 8-oxoguanine

    Google Scholar 

  • Hayakawa H, Fujikane A, Ito R, Matsumoto M, Nakayama KI, Sekiguchi M (2010) Human proteins that specifically bind to 8-oxoguanine-containing RNA and their responses to oxidative stress. Biochem Biophys Res Commun 403(2)

    Google Scholar 

  • Hia F, Takeuchi O (2020) The effects of codon bias and optimality on mRNA and protein regulation. Cell Mol Life Sci

    Google Scholar 

  • Hia F, Yang SF, Shichino Y, Yoshinaga M, Murakawa Y, Vandenbon A, Fukao A, Fujiwara T, Landthaler M, Natsume T, Adachi S, Iwasaki S, Takeuchi O (2019) Codon bias confers stability to human mRNAs. EMBO Rep 20(11):e48220

    Article  CAS  Google Scholar 

  • Houseley J, Tollervey D (2009) The many pathways of RNA degradation. Cell 136(4)

    Google Scholar 

  • Hovanessian AG, Justesen J (2007) The human 2'-5' oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2'-5' instead of 3'-5' phosphodiester bond formation. Biochimie 89(6–7)

    Google Scholar 

  • Hovanessian AG, Brown RE, Kerr IM (1977) Synthesis of low molecular weight inhibitor of protein synthesis with enzyme from interferon-treated cells. Nature 268(5620)

    Google Scholar 

  • Hsu CL, Stevens A (1993) Yeast cells lacking 5'-->3' exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5' cap structure. Mol Cell Biol 13(8)

    Google Scholar 

  • Ibsen MS, Gad HH, Thavachelvam K, Boesen T, Desprès P, Hartmann R (2014) The 2'-5'-oligoadenylate synthetase 3 enzyme potently synthesizes the 2'-5'-oligoadenylates required for RNase L activation. J Virol 88(24)

    Google Scholar 

  • Ikeuchi K, Tesina P, Matsuo Y, Sugiyama T, Cheng J, Saeki Y, Tanaka K, Becker T, Beckmann R, Inada T (2019) Collided ribosomes form a unique structural interface to induce Hel2-driven quality control pathways. EMBO J 38(5)

    Google Scholar 

  • Inada T (2020) Quality controls induced by aberrant translation. Nucleic Acids Res 48(3)

    Google Scholar 

  • Ishii T, Hayakawa H, Sekiguchi T, Adachi N, Sekiguchi M (2015) Role of Auf1 in elimination of oxidatively damaged messenger RNA in human cells. Free Radic Biol Med 79

    Google Scholar 

  • Ishii T, Hayakawa H, Igawa T, Sekiguchi T, Sekiguchi M (2018) Specific binding of PCBP1 to heavily oxidized RNA to induce cell death. Proc Natl Acad Sci USA 115(26)

    Google Scholar 

  • Ishii T, Igawa T, Hayakawa H, Fujita T, Sekiguchi M, Nakabeppu Y (2020) PCBP1 and PCBP2 both bind heavily oxidized RNA but cause opposing outcomes, suppressing or increasing apoptosis under oxidative conditions. J Biol Chem 295(34)

    Google Scholar 

  • Jinek M, Coyle SM, Doudna JA (2011) Coupled 5' nucleotide recognition and processivity in Xrn1-mediated mRNA decay. Mol Cell 41(5)

    Google Scholar 

  • Juszkiewicz S, Hegde RS (2017) Initiation of quality control during poly(A) translation requires site-specific ribosome ubiquitination. Mol Cell 65(4)

    Google Scholar 

  • Karlin S, Mrázek J (1997) Compositional differences within and between eukaryotic genomes. Proc Natl Acad Sci USA 94(19)

    Google Scholar 

  • Kerr IM, Brown RE (1978) pppA2'p5'A2'p5'A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci USA 75(1)

    Google Scholar 

  • Kleine H, Poreba E, Lesniewicz K, Hassa PO, Hottiger MO, Litchfield DW, Shilton BH, Lüscher B (2008) Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 32(1)

    Google Scholar 

  • Kwon YC, Kang JI, Hwang SB, Ahn BY (2013) The ribonuclease L-dependent antiviral roles of human 2',5'-oligoadenylate synthetase family members against hepatitis C virus. FEBS Lett 587(2)

    Google Scholar 

  • Langeberg CJ, Welch WRW, McGuire JV, Ashby A, Jackson AD, Chapman EG (2020) Biochemical characterization of yeast Xrn1. Biochemistry 59(15)

    Google Scholar 

  • Letzring DP, Wolf AS, Brule CE, Grayhack EJ (2013) Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1. RNA (New York, NY) 19(9)

    Google Scholar 

  • Li H, Wang TT (2016) MCPIP1/regnase-I inhibits simian immunodeficiency virus and is not counteracted by Vpx. J Gen Virol 97(7)

    Google Scholar 

  • Li M, Yan K, Wei L, Yang J, Lu C, Xiong F, Zheng C, Xu W (2015) Zinc finger antiviral protein inhibits coxsackievirus B3 virus replication and protects against viral myocarditis. Antivir Res 123

    Google Scholar 

  • Li Y, Banerjee S, Wang Y, Goldstein SA, Dong B, Gaughan C, Silverman RH, Weiss SR (2016) Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc Natl Acad Sci USA 113(8)

    Google Scholar 

  • Li M, Yan K, Wei L, Yang Y, Qian Q, Xu W (2018) MCPIP1 inhibits coxsackievirus B3 replication by targeting viral RNA and negatively regulates virus-induced inflammation. Med Microbiol Immunol 207(1)

    Google Scholar 

  • Li MMH, Aguilar EG, Michailidis E, Pabon J, Park P, Wu X, de Jong YP, Schneider WM, Molina H, Rice CM, MacDonald MR (2019) Characterization of novel splice variants of zinc finger antiviral protein (ZAP). J Virol 93(18)

    Google Scholar 

  • Li Y, Que L, Fukano K, Koura M, Kitamura K, Zheng X, Kato T, Aly HH, Watashi K, Tsukuda S, Aizaki H, Watanabe N, Sato Y, Suzuki T, Suzuki HI, Hosomichi K, Kurachi M, Wakae K, Muramatsu M (2020) MCPIP1 reduces HBV-RNA by targeting its epsilon structure. Sci Rep 10(1):1–9

    Article  Google Scholar 

  • Liang J, Wang J, Azfer A, Song W, Tromp G, Kolattukudy PE, Fu M (2008) A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J Biol Chem 283(10)

    Google Scholar 

  • Liao X, Xie H, Li S, Ye H, Li S, Ren K, Li Y, Xu M, Lin W, Duan X, Yang C, Chen L (2020) 2', 5'-oligoadenylate synthetase 2 (OAS2) inhibits Zika virus replication through activation of Type Ι IFN signaling pathway. Viruses 12(4)

    Google Scholar 

  • Lin RJ, Chien HL, Lin SY, Chang BL, Yu HP, Tang WC, Lin YL (2013) MCPIP1 ribonuclease exhibits broad-spectrum antiviral effects through viral RNA binding and degradation. Nucleic Acids Res 41(5)

    Google Scholar 

  • Lin RJ, Chu JS, Chien HL, Tseng CH, Ko PC, Mei YY, Tang WC, Kao YT, Cheng HY, Liang YC, Lin SY (2014) MCPIP1 suppresses hepatitis C virus replication and negatively regulates virus-induced proinflammatory cytokine responses. J Immunol (Baltimore, MD, 1950) 193(8)

    Google Scholar 

  • Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127(6)

    Google Scholar 

  • Liu S, Qiu C, Miao R, Zhou J, Lee A, Liu B, Lester SN, Fu W, Zhu L, Zhang L, Xu J, Fan D, Li K, Fu M, Wang T (2013) MCPIP1 restricts HIV infection and is rapidly degraded in activated CD4+ T cells. Proc Natl Acad Sci USA 110(47)

    Google Scholar 

  • Lusic M, Marini B, Ali H, Lucic B, Luzzati R, Giacca M (2013) Proximity to PML nuclear bodies regulates HIV-1 latency in CD4+ T cells. Cell Host Microbe 13(6)

    Google Scholar 

  • Lykke-Andersen S, Brodersen DE, Jensen TH (2009) Origins and activities of the eukaryotic exosome. J Cell Sci 122(Pt 10)

    Google Scholar 

  • Maeda K, Akira S (2017) Regulation of mRNA stability by CCCH-type zinc-finger proteins in immune cells. Int Immunol 29(4)

    Google Scholar 

  • Malathi K, Saito T, Crochet N, Barton DJ, Gale M, Silverman RH (2010) RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. RNA (New York, NY) 16(11)

    Google Scholar 

  • Mao R, Nie H, Cai D, Zhang J, Liu H, Yan R, Cuconati A, Block TM, Guo JT, Guo H (2013) Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLoS Pathog 9(7)

    Google Scholar 

  • Matsuo Y, Ikeuchi K, Saeki Y, Iwasaki S, Schmidt C, Udagawa T, Sato F, Tsuchiya H, Becker T, Tanaka K, Ingolia NT, Beckmann R, Inada T (2017) Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nat Commun 8(1)

    Google Scholar 

  • Matsushita K, Takeuchi O, Standley DM, Kumagai Y, Kawagoe T, Miyake T, Satoh T, Kato H, Tsujimura T, Nakamura H, Akira S (2009) Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458(7242)

    Google Scholar 

  • Meagher JL, Takata M, Gonçalves-Carneiro D, Keane SC, Rebendenne A, Ong H, Orr VK, MacDonald MR, Stuckey JA, Bieniasz PD, Smith JL (2019) Structure of the zinc-finger antiviral protein in complex with RNA reveals a mechanism for selective targeting of CG-rich viral sequences. Proc Natl Acad Sci USA 116(48)

    Google Scholar 

  • Meydan S, Guydosh NR (2020) Disome and trisome profiling reveal genome-wide targets of ribosome quality control. Mol Cell

    Google Scholar 

  • Mino T, Murakawa Y, Fukao A, Vandenbon A, Wessels HH, Ori D, Uehata T, Tartey S, Akira S, Suzuki Y, Vinuesa CG, Ohler U, Standley DM, Landthaler M, Fujiwara T, Takeuchi O (2015) Regnase-1 and Roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161(5)

    Google Scholar 

  • Mino T, Iwai N, Endo M, Inoue K, Akaki K, Hia F, Uehata T, Emura T, Hidaka K, Suzuki Y, Standley DM, Okada-Hatakeyama M, Ohno S, Sugiyama H, Yamashita A, Takeuchi O (2019) Translation-dependent unwinding of stem-loops by UPF1 licenses Regnase-1 to degrade inflammatory mRNAs. Nucleic Acids Res 47(16)

    Google Scholar 

  • Morales J, Li L, Fattah FJ, Dong Y, Bey EA, Patel M, Gao J, Boothman DA (2014) Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 24(1)

    Google Scholar 

  • Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13(6)

    Google Scholar 

  • Müller S, Möller P, Bick MJ, Wurr S, Becker S, Günther S, Kümmerer BM (2007) Inhibition of filovirus replication by the zinc finger antiviral protein. J Virol 81(5)

    Google Scholar 

  • Murillas R, Simms KS, Hatakeyama S, Weissman AM, Kuehn MR (2002) Identification of developmentally expressed proteins that functionally interact with Nedd4 ubiquitin ligase. J Biol Chem 277(4)

    Google Scholar 

  • Nakatsuka Y, Vandenbon A, Mino T, Yoshinaga M, Uehata T, Cui X, Sato A, Tsujimura T, Suzuki Y, Sato A, Handa T, Chin K, Sawa T, Hirai T, Takeuchi O (2018) Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia. Mucosal Immunol 11(4)

    Google Scholar 

  • Nakatsuka Y, Yaku A, Handa T, Vandenbon A, Hikichi Y, Motomura Y, Sato A, Yoshinaga M, Tanizawa K, Watanabe K, Hirai T, Chin K, Suzuki Y, Uehata T, Mino T, Tsujimura T, Moro K, Takeuchi O (2020) Profibrotic function of pulmonary group 2 innate lymphoid cells is controlled by Regnase-1. Eur Respir J

    Google Scholar 

  • Navickas A, Chamois S, Saint-Fort R, Henri J, Torchet C, Benard L (2020) No-Go decay mRNA cleavage in the ribosome exit tunnel produces 5'-OH ends phosphorylated by Trl1. Nat Commun 11(1)

    Google Scholar 

  • Nchioua R, Bosso M, Kmiec D, Kirchhoff F (2020) Cellular factors targeting HIV-1 transcription and viral RNA transcripts. Viruses 12(5)

    Google Scholar 

  • Nissan T, Rajyaguru P, She M, Song H, Parker R (2010) Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 39(5)

    Google Scholar 

  • Nunomura A, Moreira PI, Castellani RJ, Lee HG, Zhu X, Smith MA, Perry G (2012a) Oxidative damage to RNA in aging and neurodegenerative disorders. Neurotox Res 22(3)

    Google Scholar 

  • Nunomura A, Tamaoki T, Motohashi N, Nakamura M, McKeel DW, Tabaton M, Lee HG, Smith MA, Perry G, Zhu X (2012b) The earliest stage of cognitive impairment in transition from normal aging to Alzheimer disease is marked by prominent RNA oxidation in vulnerable neurons. J Neuropathol Exp Neurol 71(3)

    Google Scholar 

  • Oberst A, Malatesta M, Aqeilan RI, Rossi M, Salomoni P, Murillas R, Sharma P, Kuehn MR, Oren M, Croce CM, Bernassola F, Melino G (2007) The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch. Proc Natl Acad Sci USA 104(27)

    Google Scholar 

  • Odon V, Fros JJ, Goonawardane N, Dietrich I, Ibrahim A, Alshaikhahmed K, Nguyen D, Simmonds P (2019) The role of ZAP and OAS3/RNAseL pathways in the attenuation of an RNA virus with elevated frequencies of CpG and UpA dinucleotides. Nucleic Acids Res 47(15)

    Google Scholar 

  • Ougland R, Zhang CM, Liiv A, Johansen RF, Seeberg E, Hou YM, Remme J, Falnes PØ (2004) AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. Mol Cell 16(1)

    Google Scholar 

  • Parker R (2012) RNA degradation in Saccharomyces cerevisae. Genetics 191(3)

    Google Scholar 

  • Parker R, Song H (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11(2)

    Google Scholar 

  • Qian Y, Li X, Miao R, Liu S, Xin HB, Huang X, Wang TT, Fu M (2019) Selective degradation of plasmid-derived mRNAs by MCPIP1 RNase. Biochem J 476(19)

    Google Scholar 

  • Rebouillat D, Hovanessian AG (1999) The human 2',5'-oligoadenylate synthetase family: interferon-induced proteins with unique enzymatic properties. J Interf Cytokine Res 19(4)

    Google Scholar 

  • Robinson SR, Oliver AW, Chevassut TJ, Newbury SF (2015) The 3' to 5' exoribonuclease DIS3: from structure and mechanisms to biological functions and role in human disease. Biomolecules 5(3)

    Google Scholar 

  • Sadler AJ, Williams BR (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8(7)

    Google Scholar 

  • Salter JD, Polevoda B, Bennett RP, Smith HC (2019) Regulation of antiviral innate immunity through APOBEC ribonucleoprotein complexes. Subcell Biochem 93

    Google Scholar 

  • Schaeffer D, van Hoof A (2011) Different nuclease requirements for exosome-mediated degradation of normal and nonstop mRNAs. Proc Natl Acad Sci USA 108(6)

    Google Scholar 

  • Schmid M, Jensen TH (2008) The exosome: a multipurpose RNA-decay machine. Trends Biochem Sci 33(10)

    Google Scholar 

  • Schmidt C, Kowalinski E, Shanmuganathan V, Defenouillère Q, Braunger K, Heuer A, Pech M, Namane A, Berninghausen O, Fromont-Racine M, Jacquier A, Conti E, Becker T, Beckmann R (2016) The cryo-EM structure of a ribosome-Ski2-Ski3-Ski8 helicase complex. Science (New York, NY) 354(6318)

    Google Scholar 

  • Schwartz SL, Conn GL (2019) RNA regulation of the antiviral protein 2'-5'-oligoadenylate synthetase. Wiley Interdiscip Rev RNA 10(4)

    Google Scholar 

  • Schwerk J, Soveg FW, Ryan AP, Thomas KR, Hatfield LD, Ozarkar S, Forero A, Kell AM, Roby JA, So L, Hyde JL, Gale M, Daugherty MD, Savan R (2019) RNA-binding protein isoforms ZAP-S and ZAP-L have distinct antiviral and immune resolution functions. Nat Immunol 20(12)

    Google Scholar 

  • Shan X, Chang Y, Lin CL (2007) Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression. FASEB J 21(11)

    Google Scholar 

  • Shao S, von der Malsburg K, Hegde RS (2013) Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation. Mol Cell 50(5)

    Google Scholar 

  • Sharma P, Murillas R, Zhang H, Kuehn MR (2010) N4BP1 is a newly identified nucleolar protein that undergoes SUMO-regulated polyubiquitylation and proteasomal turnover at promyelocytic leukemia nuclear bodies. J Cell Sci 123(Pt 8)

    Google Scholar 

  • Shen V, Kiledjian M (2006) A view to a kill: structure of the RNA exosome. Cell 127(6)

    Google Scholar 

  • Shoemaker CJ, Green R (2012) Translation drives mRNA quality control. Nat Struct Mol Biol 19(6):594–601

    Article  CAS  Google Scholar 

  • Silverman RH (2007) Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 81(23)

    Google Scholar 

  • Simms CL, Zaher HS (2016) Quality control of chemically damaged RNA. Cell Mol Life Sci 73(19)

    Google Scholar 

  • Simms CL, Hudson BH, Mosior JW, Rangwala AS, Zaher HS (2014) An active role for the ribosome in determining the fate of oxidized mRNA. Cell Rep 9(4)

    Google Scholar 

  • Siwaszek A, Ukleja M, Dziembowski A (2014) Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. RNA Biol 11(9)

    Google Scholar 

  • Slattery E, Ghosh N, Samanta H, Lengyel P (1979) Interferon, double-stranded RNA, and RNA degradation: activation of an endonuclease by (2'-5')An. Proc Natl Acad Sci USA 76(10)

    Google Scholar 

  • Spel L, Nieuwenhuis J, Haarsma R, Stickel E, Bleijerveld OB, Altelaar M, Boelens JJ, Brummelkamp TR, Nierkens S, Boes M (2018) Nedd4-binding protein 1 and TNFAIP3-interacting protein 1 control MHC-1 display in neuroblastoma. Cancer Res 78(23)

    Google Scholar 

  • Sundaramoorthy E, Leonard M, Mak R, Liao J, Fulzele A, Bennett EJ (2017) ZNF598 and RACK1 regulate mammalian ribosome-associated quality control function by mediating regulatory 40S ribosomal ubiquitylation. Mol Cell 65(4)

    Google Scholar 

  • Takata MA, Gonçalves-Carneiro D, Zang TM, Soll SJ, York A, Blanco-Melo D, Bieniasz PD (2017) CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature 550(7674)

    Google Scholar 

  • Tanaka T, Kato N, Cho MJ, Sugiyama K, Shimotohno K (1996) Structure of the 3' terminus of the hepatitis C virus genome. J Virol 70(5)

    Google Scholar 

  • Tanaka M, Chock PB, Stadtman ER (2007) Oxidized messenger RNA induces translation errors. Proc Natl Acad Sci USA 104(1)

    Google Scholar 

  • Teoh PJ, Koh MY, Chng WJ (2020) ADARs, RNA editing and more in hematological malignancies. Leukemia

    Google Scholar 

  • Thoms M, Thomson E, Baßler J, Gnädig M, Griesel S, Hurt E (2015) The exosome is recruited to RNA substrates through specific adaptor proteins. Cell 162(5)

    Google Scholar 

  • Tsuboi T, Kuroha K, Kudo K, Makino S, Inoue E, Kashima I, Inada T (2012) Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3' end of aberrant mRNA. Mol Cell 46(4)

    Google Scholar 

  • Uehata T, Iwasaki H, Vandenbon A, Matsushita K, Hernandez-Cuellar E, Kuniyoshi K, Satoh T, Mino T, Suzuki Y, Standley DM, Tsujimura T, Rakugi H, Isaka Y, Takeuchi O, Akira S (2013) Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation. Cell 153(5)

    Google Scholar 

  • Van Damme E, Laukens K, Dang TH, Van Ostade X (2010) A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 6(1)

    Google Scholar 

  • Veigl SJ, Harman O, Lamm E (2020) Friedrich Miescher’s discovery in the historiography of genetics: from contamination to confusion, from nuclein to DNA. J Hist Biol 53(3)

    Google Scholar 

  • Weick EM, Lima CD (2020) RNA helicases are hubs that orchestrate exosome-dependent 3'–5' decay. Curr Opin Struct Biol 67

    Google Scholar 

  • Weidner AM, Bradley MA, Beckett TL, Niedowicz DM, Dowling AL, Matveev SV, LeVine H, Lovell MA, Murphy MP (2011) RNA oxidation adducts 8-OHG and 8-OHA change with Aβ42 levels in late-stage Alzheimer’s disease. PLoS One 6(9)

    Google Scholar 

  • Whelan JN, Li Y, Silverman RH, Weiss SR (2019) Zika virus production is resistant to RNase L antiviral activity. J Virol 93(16)

    Google Scholar 

  • Wilamowski M, Gorecki A, Dziedzicka-Wasylewska M, Jura J (2018) Substrate specificity of human MCPIP1 endoribonuclease. Sci Rep 8(1)

    Google Scholar 

  • Wreschner DH, McCauley JW, Skehel JJ, Kerr IM (1981) Interferon action-sequence specificity of the ppp(A2'p)nA-dependent ribonuclease. Nature 289(5796)

    Google Scholar 

  • Wurtmann EJ, Wolin SL (2009) RNA under attack: cellular handling of RNA damage. Crit Rev Biochem Mol Biol 44(1)

    Google Scholar 

  • Yamasoba D, Sato K, Ichinose T, Imamura T, Koepke L, Joas S, Reith E, Hotter D, Misawa N, Akaki K, Uehata T, Mino T, Miyamoto S, Noda T, Yamashita A, Standley DM, Kirchhoff F, Sauter D, Koyanagi Y, Takeuchi O (2019) N4BP1 restricts HIV-1 and its inactivation by MALT1 promotes viral reactivation. Nat Microbiol 4(9)

    Google Scholar 

  • Yan LL, Zaher HS (2019) How do cells cope with RNA damage and its consequences? J Biol Chem 294(41)

    Google Scholar 

  • Yan LL, Simms CL, McLoughlin F, Vierstra RD, Zaher HS (2019) Oxidation and alkylation stresses activate ribosome-quality control. Nat Commun 10(1)

    Google Scholar 

  • Yang C, Hu Y, Zhou B, Bao Y, Li Z, Gong C, Yang H, Wang S, Xiao Y (2020a) The role of m 6 A modification in physiology and disease. Cell Death Dis 11(11)

    Google Scholar 

  • Yang H, Ito F, Wolfe AD, Li S, Mohammadzadeh N, Love RP, Yan M, Zirkle B, Gaba A, Chelico L, Chen XS (2020b) Understanding the structural basis of HIV-1 restriction by the full length double-domain APOBEC3G. Nat Commun 11(1)

    Google Scholar 

  • Yoshinaga M, Nakatsuka Y, Vandenbon A, Ori D, Uehata T, Tsujimura T, Suzuki Y, Mino T, Takeuchi O (2017) Regnase-1 maintains iron homeostasis via the degradation of transferrin receptor 1 and prolyl-hydroxylase-domain-containing protein 3 mRNAs. Cell Rep 19(8)

    Google Scholar 

  • Zhou A, Molinaro RJ, Malathi K, Silverman RH (2005) Mapping of the human RNASEL promoter and expression in cancer and normal cells. J Interf Cytokine Res 25(10)

    Google Scholar 

  • Zhou W, Lu Q, Li Q, Wang L, Ding S, Zhang A, Wen X, Zhang L, Lu C (2017) PPR-SMR protein SOT1 has RNA endonuclease activity. Proc Natl Acad Sci USA 114(8)

    Google Scholar 

  • Zhu Y, Gao G (2008) ZAP-mediated mRNA degradation. RNA Biol 5(2)

    Google Scholar 

  • Zhu Y, Chen G, Lv F, Wang X, Ji X, Xu Y, Sun J, Wu L, Zheng YT, Gao G (2011) Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc Natl Acad Sci USA 108(38)

    Google Scholar 

  • Zinder JC, Lima CD (2017) Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev 31(2)

    Google Scholar 

  • Zinoviev A, Ayupov RK, Abaeva IS, Hellen CUT, Pestova TV (2020) Extraction of mRNA from stalled ribosomes by the Ski complex. Mol Cell 77(6)

    Google Scholar 

Download references

Acknowledgements

The authors thank all members of our laboratory for discussions. This work is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers JP18H05278 and 20F20115 and by AMED under Grant Number JP19gm4010002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Takeuchi .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to report.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hia, F., Takeuchi, O. (2021). The Role of Ribonucleases in RNA Damage, Inactivation and Degradation. In: Kotta-Loizou, I. (eds) RNA Damage and Repair. Springer, Cham. https://doi.org/10.1007/978-3-030-76571-2_5

Download citation

Publish with us

Policies and ethics