Skip to main content

Analysis of the Ultrasonic Guided Wave Sensitivity to the Bone Structure for Osteoporosis Diagnostics

  • Conference paper
  • First Online:
Physics and Mechanics of New Materials and Their Applications (PHENMA 2021)

Abstract

In the last decades, Quantitative Ultrasound (QUS) has become a widespread method of examining human bones to assess their current state and detect developing osteoporosis. This is mostly based on empirical experimental data, while theoretical (computer) simulation of wave processes in bones and bone-like structures (so-called phantoms) provides an insight into the guided wave regularities in such structures. A parametric study reveals the influence of various factors that could be used in osteoporosis diagnostics as signs of latent bone degradation. The present work gives examples of such a case study using the Green’s matrix-based semi-analytical model for guided wave excitation and propagation in elastic multilayered waveguides mimicking typical property variations in real bones covered by a soft tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Tatarinov, N. Sarvazyan, A. Sarvazyan, Ultrasonics 43, 672 (2005)

    Article  Google Scholar 

  2. P. Moilanen et al., Ultrasound in Med. & Biol. 32(5), 709 (2006)

    Article  CAS  Google Scholar 

  3. P. Pisani, World. J. Radiol. 5(11), 398 (2013)

    Google Scholar 

  4. V. Kilappa, K. Xu, P. Moilanen, Ultrasound Med. Biol 39(7), 1223 (2013)

    Article  Google Scholar 

  5. A. Tatarinov, V. Egorov, N. Sarvazyan, A. Sarvazyan, Ultrasonics 54(5), 1162 (2014)

    Article  Google Scholar 

  6. J.G. Minonzio, J. Foiret, P. Moilanen, J. Acoust. Soc. Am. 137(1), 98 (2015)

    Article  Google Scholar 

  7. D. Hans, S. Baim, J Clin Densitom 20(3), 322 (2017)

    Article  Google Scholar 

  8. K. Kassou, Y. Remram, P. Laugier, J.G. Minonzio, Ultrasonics 81, 1 (2017)

    Article  Google Scholar 

  9. K.I. Lee, S.W. Yoon, J. Biomech 55, 147 (2017)

    Article  CAS  Google Scholar 

  10. D. Pereira, G. Haïat, J. Fernandes, P. Belanger, J. Acoust. Soc. Am. 145(1), 121 (2019)

    Article  Google Scholar 

  11. J. Schneider, G. Iori, D. Ramiandrisoa, Arch. Osteoporos 14(1), 21 (2019)

    Article  Google Scholar 

  12. E. Glushkov, N. Glushkova, A. Eremin, J. Acoust. Soc. Am. 129(5), 2923 (2011)

    Article  Google Scholar 

  13. A. Raghavan, C.E.S. Cesnik, Shock Vib. Diagn. 2, 91 (2007)

    Article  Google Scholar 

  14. V. Giurgiutiu, Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Academic Press/Elsevier: Cambridge, MA, 747 p. (2008).

    Google Scholar 

  15. M.J.S. Lowe et al., J. Acoust. Soc. Am. 112(6), 2612 (2002)

    Article  CAS  Google Scholar 

  16. J.-G. Minonzioa et al., Bone 116, 111 (2018)

    Article  Google Scholar 

  17. T. Tran, M.D. Sacchi, D. Ta, Ann. Biomed. Eng. 47(11), 2178 (2019)

    Article  Google Scholar 

  18. K. Kishimoto et al., J. Appl. Mech. 62, 841 (1995)

    Article  Google Scholar 

  19. C. Prada, O. Balogun, T.W. Murray. Appl. Phys. Lett. 87 194109 (2005)

    Google Scholar 

  20. C. Prada, D. Clorennec, D. Royer, J. Acoust. Soc. Am 124, 203 (2008)

    Article  Google Scholar 

  21. C. Grünsteidl et al., Ultrasonics 65, 1 (2016)

    Article  Google Scholar 

  22. S. Karous et al., Can. J. Phys. 97(10), 1064 (2019)

    Article  CAS  Google Scholar 

  23. E.V. Glushkov, N.V. Glushkova, J. Sound. Vibr., 500, 116023 (2021)

    Google Scholar 

Download references

Acknowledgements

The work is supported by the Russian Science Foundation (project No. 17-11-01191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Glushkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glushkov, E., Glushkova, N., Ermolenko, O., Tatarinov, A. (2021). Analysis of the Ultrasonic Guided Wave Sensitivity to the Bone Structure for Osteoporosis Diagnostics. In: Parinov, I.A., Chang, SH., Kim, YH., Noda, NA. (eds) Physics and Mechanics of New Materials and Their Applications. PHENMA 2021. Springer Proceedings in Materials, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-76481-4_35

Download citation

Publish with us

Policies and ethics