Skip to main content

Relaxation Processes in Organic Anticorrosive Films

  • Conference paper
  • First Online:
Physics and Mechanics of New Materials and Their Applications (PHENMA 2021)

Abstract

Organic coatings (films), modified with nonorganic anions, are widespread as means of protection of active metals from corrosion in the aggressive industrial environments. It has been established that these films demonstrate high through electrical conductivity and negative electrical capacitance at frequencies of the audio range. The frequency dependence of film samples with negative capacity seems unique. At the decrease of the frequency of the measuring electric field, the capacity module sharply increases and then, after reaching the value of a few tens or even hundreds of microfarads, remains unchanged within a certain low-frequency range. Such a frequency dependence of the capacity confirms that the negative capacity of the films occurs due to the development of relaxation polarization at the inverse intensity of the electric field. For this research on the negative capacity samples with the developed processes of relaxation polarization and the polarization of ionic shift, we have proposed a microscopic model of the development of relaxation polarization and also the impedance description of their electric properties. The tangent of the dielectric loss angle of these films has also a negative value. At the same time, the tangent modulus is defined as the sum of the contribution of the relaxation polarization mechanism itself (due to the absence of a maximum in the frequency dependence of the tangent) and the contribution of the through-conduction mechanism (due to the presence of the frequency maximum of electrical conductivity). The minimum is observed in the frequency dependence of the imaginary part of the complex electrical conductivity (it is negative in the area of frequency dispersion) . The comparison of the electrical parameters of the films, calculated within the framework of the model described here, and those, obtained experimentally, showed their good conformity. Thus the negativity of electric capacity of organic anticorrosive films is actually caused by a mechanism of relaxation nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G.S. Plotnikov, V.B. Zaitsev, Physical Foundations of Molecular Electronics (Department of Physics, Moscow State University, Moscow, 2000), p. 164

    Google Scholar 

  2. N.T. Sudar, V.M. Kapralova, V.V. Loboda, Materials of Molecular Electronics (St. Petersburg State Polytechnic University, 2014), p. 107 (In Russian)

    Google Scholar 

  3. S.P. Shpanko, E.N. Sidorenko, L.E. Kuznetsova, E.A. Sosin, in Advanced Materials—Proceedings of the International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2018, Springer Proceedings in Physics, ed. by Ivan A. Parinov, Shun-Hsyung Chang, Yun-Hae Kim (Springer Nature, Cham, Switzerland, 224, 2019), p. 123

    Google Scholar 

  4. E.N. Sidorenko, S.P. Shpanko, Proceedings of the International Conference “Current issues of Electrochemistry, Ecology and Corrosion Protection”. Tambov, p. 253 (2019) (In Russian)

    Google Scholar 

  5. D.A. Grineva, E.N. Sidorenko, S.P. Shpanko, in Chemistry: Achievements and Prospects (SFedU Press, Rostov-on-Don-Taganrog, 2020), p. 233 (In Russian)

    Google Scholar 

  6. E.N. Sidorenko, S.P. Shpanko, M.A. Bunin, T.I. Debelova, in Physics and Mechanics of New Materials and Their Applications, ed. by Ivan A. Parinov, Shun-Hsyung Chang, Banh Tien Long (Nova Science Publishers, New York, 2020), p. 129

    Google Scholar 

  7. A.K. Jonscher, J. Chem. Soc. Faraday Trans. 82(2), 75 (1986)

    Article  CAS  Google Scholar 

  8. A.P. Boltaev, F.A. Pudonin, Concise Information on Physics. FIAN 7, 3 (2011). ((In Russian))

    Google Scholar 

  9. Yu. V. Kabirov, V.G. Gavrilyachenko, A.S. Bogatin, K.G. Abdulvakhidov, E.V. Chebanova, N.V. Prutsakova, E.B. Rusakova, Eng. Bull. Don. 4 (2017) (In Russian)

    Google Scholar 

  10. J. Shulman, Y.Y. Xue, S. Tsui, F. Chen, C.W. Chu, Phys. Rev. B. 80, 134202 (2009)

    Article  Google Scholar 

  11. N.A. Penin, Phys. Technol. Semicond. 3(4), 626 (1996)

    Google Scholar 

  12. N.M. Olekhnovich, Yu.V. Radyush, A.V. Pushkarev, Fizika Tverdogo Tela 54(11), 2103 (2012)

    Google Scholar 

  13. V.G. Gavrilyachenko, Yu.V. Kabirov, E.M. Panchenko, E.I. Sitalo, T.V. Gavrilyachenko, E.V. Milov, N.V. Lyanguzov, Fizika Tverdogo Tela 55(8), 1540 (2013)

    Google Scholar 

  14. V.V. Makarov, A.B. Sherman, Fizika Tverdogo Tela 44(11), 2101 (2002)

    Google Scholar 

  15. G.I. Skanavi, Physics of Dielectrics, Moscow-Leningrad. State Publishing House of Technical and Theoretical Literature, (1949), p. 500 (In Russian)

    Google Scholar 

  16. A.S. Bogatin, Bull. Russ. Acad. Sci. Phy. 57(8), 1128 (2011)

    Article  Google Scholar 

  17. A.S. Bogatin, A.V. Turik, S.A. Kovrigina, V.N. Bogatina, E.V. Andreev, Bull. Russ. Acad. Sci. Phy. 74(8), 1066 (2010)

    Article  Google Scholar 

  18. A.S. Bogatin, A.L. Bulanova, S.A. Kovrigina, E.V. Andreev, I.O. Nosatschev, Bull. Russ. Acad. Sci. Phy. 84(11), 1425 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Sidorenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bogatin, A.S., Sidorenko, E.N., Shpanko, S.P., Kovrigina, S.A., Abdulvakhidov, K.G., Nosatschev, I.O. (2021). Relaxation Processes in Organic Anticorrosive Films. In: Parinov, I.A., Chang, SH., Kim, YH., Noda, NA. (eds) Physics and Mechanics of New Materials and Their Applications. PHENMA 2021. Springer Proceedings in Materials, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-76481-4_20

Download citation

Publish with us

Policies and ethics