Skip to main content

Acceleration of Therapeutic Use of Brain Computer Interfaces by Development for Gaming

  • Conference paper
  • First Online:
Intelligent Technologies for Interactive Entertainment (INTETAIN 2020)

Abstract

Brain computer interfaces (BCI) are the foundation of numerous therapeutic applications that use brain signals to control programs or to translate into feedback. While the technical creation of these systems may be done in the lab with limited design expertise, the translation into a therapeutic calls for the engagement of game designers. This is evermore true for BCI in virtual reality (VR). VR has the potential to elevate BCI in embodiment and immersiveness. These traits are key for neurofeedback therapies for neurobehavioral conditions like anxiety. The cooperation between game designers and scientists overcomes the hurdle in transforming an experiment into a tool. More often than not, BCI on the road to therapeutics or other practical applications are launched in original or adapted games to demonstrate the usability of the platform. In the absence of partnerships like this, slow or stalled progress ensues on the scientific translation. We demonstrate this principle in a range of examples and in-depth with Mandala Flow Stateā€”a VR neurofeedback system that first served as an interactive installation in an art museum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Gerven, F.: The brain-computer interface cycle. J. Neural Eng. 6(4), 041001 (2009)

    ArticleĀ  Google ScholarĀ 

  2. Andersen, R.: From thought to action: the brain-machine interface in posterior parietal cortex. Proc. Natl. Acad. Sci. USA 116(52), 26274ā€“26279 (2019)

    ArticleĀ  Google ScholarĀ 

  3. Rohani, D.: Brain-computer interface using P300 and virtual reality: a gaming approach for treating ADHD. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL (2014)

    Google ScholarĀ 

  4. Holz, E.: Brainā€“computer interface controlled gaming: evaluation of usability by severely motor restricted end-users. Artif. Intell. Med. 59(2), 111ā€“120 (2013)

    ArticleĀ  Google ScholarĀ 

  5. Scherer, R., Faller, J., Balderas, D.: Brainā€“computer interfacing: more than the sum of its parts. Soft Comput. 17, 317ā€“331 (2013)

    ArticleĀ  Google ScholarĀ 

  6. Thibault, R.T., Lifshitz, M., Raz, A.: The self-regulating brain and neurofeedback: experimental science and clinical promise. Cortex 74, 247ā€“261 (2016)

    ArticleĀ  Google ScholarĀ 

  7. Hammond, D.C.: Neurofeedback treatment of depression and anxiety. J. Adult Dev. 12(2/3), 131ā€“137 (2005)

    ArticleĀ  Google ScholarĀ 

  8. Orndorff-Plunkett, F., SIngh, F., Aragon, O.R., Pineda, J.: Assessing the effectiveness of neurofeedback training in the context of clinical and social neuroscience. Brain Sci. 7(96) (2017)

    Google ScholarĀ 

  9. Rashid, M., Sulaiman, N., Abdul Majeed, A.P., Musa, R.M.: Current status, challenges, and possible solutions of EEG-based brain-computer interface: a comprehensive review. Front. Neurorobot. 14(25) (2020)

    Google ScholarĀ 

  10. University of Twente, ā€œBMS Labā€ (2020). https://bmslab.utwente.nl/

  11. Nijholt, A., Plass-Oude Bos, D., Reuderink, B.: Turning shortcomings into challenges: brain-computer interfaces for games. Entertainment Comput. 1, 85ā€“94 (2009)

    Google ScholarĀ 

  12. Interactive Productline Team, ā€œMindball Playā€ Interactive Productline IP AB (2018)

    Google ScholarĀ 

  13. Gazner, P.D., et al.: Restoring the sense of touch using a sensorimotor demultiplexing neural interface. Cell 181(4), P763ā€“773 (2020)

    Google ScholarĀ 

  14. Sitaram, R., et al.: Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 18(2) (2017)

    Google ScholarĀ 

  15. Krepel, N., Egtberts, T., Sack, A.T., Heinrich, H., Ryan, M., Arns, M.: A multicenter effectiveness trial of QEEG-informed neurofeedback in ADHD: replication and treatment prediction. Neuroimage Clin. 28(102399) (2020)

    Google ScholarĀ 

  16. Emotiv, ā€œEmotiv.comā€ (2020). https://www.emotiv.com/category/independent-studies/. Accessed 5 Oct 2020

  17. Alchalabi, A.E., Eddin, A.N., Shirmohammadi, S.: More attention, less deficit: wearable EEG-based serious game for focus improvement. In: IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), Perth, WA (2017)

    Google ScholarĀ 

  18. Wijnhoven, L.A., Creemers, D.H., Engels, R.C., Granic, I.: The effect of the video game Mindlight on anxiety symptoms in children with an Autism Spectrum Disorder. BMC Psychiatry 15(1), 138 (2015)

    ArticleĀ  Google ScholarĀ 

  19. Wijnhoven, L.A., et al.: Effects of the video game ā€˜Mindlightā€™ on anxiety of children with an autism spectrum disorder: a randomized controlled trial. J. Behav. Ther. Exp. Psychiatry 68, 101548 (2020)

    ArticleĀ  Google ScholarĀ 

  20. MyndLift, ā€œMyndliftā€ (2020). https://www.myndlift.com/

  21. Perez-Marcos, D.: Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation. NeuroEngineering Rehabil. 15(113) (2018)

    Google ScholarĀ 

  22. ā€œERA-LEARNā€. https://www.era-learn.eu/network-information/networks/eurostars/cut-off-11-09-2014/electrophysiological-and-virtual-reality-assembly-for-neurorehabilitation. Accessed 5 Dec 2020

  23. Marzbani, H., Marateb, H.R., Mansourian, M.: Methodological note: neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic Clin. Neurosci. 7(2), 143ā€“158 (2016)

    Google ScholarĀ 

  24. Micoulaud-Franchi, F.A., Geoffroy, P.A., Fond, G., Lopez, R., Bioulac, S., Philip, P.: EEG neurofeedback treatments in children with ADHD: an updated meta-analysis of randomized controlled trials. Front. Hum. Neurosci. 13(8), 906 (2014)

    Google ScholarĀ 

  25. Patel, K., et al.: Effects of neurofeedback in the management of chronic pain: a systematic review and meta-analysis of clinical trials. Eur. J. Pain (2020)

    Google ScholarĀ 

  26. Adolfsson, A., Bernal, J., Ackerman, M., Scott, J.: Musical mandala mindfulness: a generative biofeedback experience. In: Musical Metacreation, Charlotte, NC (2019)

    Google ScholarĀ 

  27. Harvard University, ā€œCreating a Mandalaā€ (2020). https://pluralism.org/creating-a-mandala

  28. ā€œNight of Ideasā€ (2019). https://www.nightofideassf.com/

  29. BrainMaster Technologies (2020). https://www.brainmaster.com/product/zukors-drive-clinical/

  30. Interaxon, ā€œChooseMuseā€ (2020). www.choosemuse.com

  31. Scott, J., Sims, M., Harrold, L., Jacobus, N., Avelar, C.: Transformation of Buddhist Mandalas into a Virtual Reality Installation, Leonardo, submitted

    Google ScholarĀ 

  32. Bossenbroek, R., Wols, A., Weerdmeester, J., Lichtwarck-Aschoff, A., Granic, I., van Rooij, M.: Efficacy of a virtual reality biofeedback game (DEEP) to reduce anxiety and disruptive classroom behavior: single-case study. JMIR Ment. Health 7(3), e16066 (2020)

    ArticleĀ  Google ScholarĀ 

  33. Deloitte, ā€œDigital media trends surveyā€ Deloitte.Insights (2020)

    Google ScholarĀ 

  34. Flynt, J.: ā€œ3D Insiderā€, 31 May 2019. https://3dinsider.com/virtual-reality-statistics/. Accessed 5 Oct 2020

  35. Val-Calvo, M., Alvarez-Sanches, J.R., Ferrandez-Vicente, J.M., Fernandez, E.: Optimization of real-time EEG artifact removal and emotion estimation for human-robot interaction applications. Front. Comput. Neurosci. 13(80) (2019)

    Google ScholarĀ 

  36. Emotiv, ā€œEmotiv.comā€ (2020). https://www.emotiv.com/our-technology/. Accessed 5 Oct 2020

  37. Jackson, M.M., Mappus, R.: Applications for brain-computer interfaces. In: Tan, D., Nijholt, A. (eds.) Brain-Computer Interfaces, pp. 89ā€“103. Springer, London (2010). https://doi.org/10.1007/978-1-84996-272-8_6

    ChapterĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia A. Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scott, J.A., Sims, M. (2021). Acceleration of Therapeutic Use of Brain Computer Interfaces by Development for Gaming. In: Shaghaghi, N., Lamberti, F., Beams, B., Shariatmadari, R., Amer, A. (eds) Intelligent Technologies for Interactive Entertainment. INTETAIN 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 377. Springer, Cham. https://doi.org/10.1007/978-3-030-76426-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76426-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76425-8

  • Online ISBN: 978-3-030-76426-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics