Skip to main content

Laboratory Tests in Nephrology

  • Chapter
  • First Online:
Primer on Nephrology

Abstract

Laboratory investigations play a key role in diagnosing and monitoring various kidney diseases and systemic disorders with renal involvement. These investigations involve point-of-care testing such as bedside urinary examination and lab-based tests from the departments of hematology, biochemistry, immunology, microbiology, and virology. Judicious, targeted investigation and monitoring is an important aspect of nephrological practice, achieving an early diagnosis without over-investigation as well as appreciating false-positive and false-negative results.

In this chapter, we will discuss different methods of kidney function assessment, as well as the different tests used to diagnose kidney disorders and their complications, the clinical applications of each test, their advantages, and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seegmiller JC, Eckfeldt JH, Lieske JC. Challenges in measuring glomerular filtration rate: a clinical laboratory perspective. Adv Chronic Kidney Dis. 2018;25(1):84–92.

    Article  PubMed  Google Scholar 

  2. Levey AS, Inker LA. Assessment of glomerular filtration rate in health and disease: a state of the art review. Clin Pharmacol Ther. 2017;102(3):405–19.

    Article  CAS  PubMed  Google Scholar 

  3. Shannon BJA, Smith HW. The excretion of inulin, xylose and urea by normal and phlorizinized man. J Clin Invest. 1935;14:393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.

    Google Scholar 

  5. York N. Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int. 2002;62:2223–9.

    Article  Google Scholar 

  6. Stevens LA, Schmid CH, Greene T, Li L, Beck GJ, Joffe MM, et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 2009;75(6):652–60.

    Article  CAS  PubMed  Google Scholar 

  7. Foster MC, Levey AS, Inker LA, Shafi T, Fan L, Gudnason V, et al. Non-GFR determinants of low-molecular-weight serum protein filtration markers in the elderly: AGES-kidney and MESA-kidney. Am J Kidney Dis. 2017;70(3):406–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. NICE guidance: Chronic kidney disease in adults: assessment and management Clinical guideline [CG182] [Internet]. 2015 [cited Jan 6, 2020]. Available from: https://www.nice.org.uk/guidance/cg182/chapter/1-Recommendations#investigations-for-chronic-kidney-disease-2

  9. Lam YWF, Banerji S, Hatfield C, Talbert RL. Principles of drug administration in renal insufficiency. Clin Pharmacokinet. 1997;32(1):30–57.

    Article  CAS  PubMed  Google Scholar 

  10. Shannon JA. The renal excretion of creatinine in man. J Clin Invest. 1935;14(4):403–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soveri I, Berg UB, Bjork J, Elinder CG, Grubb A, Mejare I, et al. Measuring GFR: a systematic review. Am J Kidney Dis. 2014;64(3):411–24.

    Article  PubMed  Google Scholar 

  12. Stevens LA, Levey AS. Measured GFR as a confirmatory test for estimated GFR. J Am Soc Nephrol. 2009; 20(11):2305–13.

    Google Scholar 

  13. Delanaye P, Ebert N, Melsom T, Gaspari F, Mariat C, Cavalier E, et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 1: how to measure glomerular filtration rate with iohexol? Clin Kidney J. 2016;9(5):682–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Delanaye P, Melsom T, Ebert N, Bäck S, Mariat C, Cavalier E, et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 2: why to measure glomerular filtration rate with iohexol? Clin Kidney J. 2016;9(5):700–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cockcroft D, Gault H. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;41:31–41.

    Article  Google Scholar 

  16. Levey A, Coresh J, Greene T, Stevens L, Zhang Y (Lucy), Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular. Ann Intern Med. 2006;145(4):247–54.

    Google Scholar 

  17. Levey AS, Stevens LA, Schmid CH, Zhang YL, Iii AFC, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367(1):20–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Piccoli GB, Cabiddu G, Attini R, Vigotti F, Fassio F, Rolfo A, et al. Pregnancy in CKD: questions and answers in a changing panorama. Best Pract Res Clin Obstet Gynaecol. 2015;29(5):625–42.

    Article  PubMed  Google Scholar 

  20. Chawla LS, Bellomo R, Bihorac A, Goldstein SL, Siew ED, Bagshaw SM, et al. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat Rev Nephrol. 2017;13(4):241–57.

    Article  PubMed  Google Scholar 

  21. Brigden ML. Clinical utility of the erythrocyte sedimentation rate. Am Fam Physician. 1999;60(5):1443–50.

    CAS  PubMed  Google Scholar 

  22. Harrison M. Erythrocyte sedimentation rate and C-reactive protein. Aust Prescr. 2015;38(3):93–4.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest. 2003;111(12):1805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berger SP, Roos A, Daha MR. Complement and the kidney: what the nephrologist needs to know in 2006? Nephrol Dial Transpl. 2005;20(12):2613–9.

    Article  Google Scholar 

  25. Solomon DH, Kavanaugh AJ, Schur PH. Evidence-based guidelines for the use of immunologic tests: antinuclear antibody testing. Arthritis Care Res (Hoboken). 2002;47(4):434–44.

    Article  Google Scholar 

  26. Jeong S, Yang D, Lee W, Kim G, Kim H, Ahn HS, et al. Diagnostic value of screening enzyme immunoassays compared to indirect immunofluorescence for anti-nuclear antibodies in patients with systemic rheumatic diseases: a systematic review and meta-analysis. Semin Arthritis Rheum. 2018;48(2):1–9.

    Google Scholar 

  27. Meroni PL, Schur PH. ANA screening: an old test with new recommendations. Ann Rheum Dis. 2010;69:1420–2.

    Article  CAS  PubMed  Google Scholar 

  28. Cozzani E, Drosera M, Gasparini G, Parodi A. Serology of lupus erythematosus: correlation between immunopathological features and clinical aspects. Autoimmune Dis. 2014;2014:321359.

    PubMed  PubMed Central  Google Scholar 

  29. Isenberg DA, Manson JJ, Ehrenstein MR, Rahman A. Fifty years of anti-ds DNA antibodies: are we approaching journey’s end? Rheumatology. 2007;46(7):1052–6.

    Article  CAS  PubMed  Google Scholar 

  30. Gonza’lez C, Garcia B, Herra O, Gonza M. Anti-nucleosome, anti-chromatin, anti-dsDNA and anti- histone antibody reactivity in systemic lupus erythematosus. Clin Chem Lab Med. 2004;42(3):266–72.

    Google Scholar 

  31. Bizzaro N, Villalta D, Giavarina D, Tozzoli R. Are anti-nucleosome antibodies a better diagnostic marker than anti-dsDNA antibodies for systemic lupus erythematosus? A systematic review and a study of meta-analysis. Autoimmun Rev. 2012;12(2):97–106.

    Article  CAS  PubMed  Google Scholar 

  32. Didier K, Bolko L, Giusti D, Toquet S, Robbins A, Antonicelli F, et al. Autoantibodies associated with connective tissue diseases: what meaning for clinicians? Front Immunol. 2018;9:541.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Reveille JD, Solomon DH. Evidence-based guidelines for the use of immunologic tests: Anticentromere, Scl-70, and nucleolar antibodies. Arthritis Care Res (Hoboken). 2003;49(3):399–412.

    Article  Google Scholar 

  34. Pengo V, Banzato A, Bison E, Denas G, Padayattil Jose S, Ruffatti A. Antiphospholipid syndrome: critical analysis of the diagnostic path. Lupus. 2010;19(4):428–31.

    Article  CAS  PubMed  Google Scholar 

  35. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295–306.

    Article  CAS  PubMed  Google Scholar 

  36. Moore GW. Recent guidelines and recommendations for laboratory detection of lupus anticoagulants. Semin Thromb Hemost. 2014;40(2):163–71.

    Article  CAS  PubMed  Google Scholar 

  37. Parkpian V, Verasertniyom O, Vanichapuntu M, Totemchokchyakarn K, Nantiruj K, Pisitkul P, et al. Specificity and sensitivity of anti-beta2-glycoprotein I as compared with anticardiolipin antibody and lupus anticoagulant in Thai systemic lupus erythematosus patients with clinical features of antiphospholipid syndrome. Clin Rheumatol. 2007;26(10):1663–70.

    Article  PubMed  Google Scholar 

  38. Seelen MA, Trouw LA, Daha MR. Diagnostic and prognostic significance of anti-C1q antibodies in systemic lupus erythematosus. Curr Opin Nephrol Hypertens. 2003;12(6):619–24.

    Article  PubMed  Google Scholar 

  39. Csernok E, Moosig F. Current and emerging techniques for ANCA detection in vasculitis. Nat Rev Rheumatol. 2014;10(8):494–501.

    Article  CAS  PubMed  Google Scholar 

  40. Damoiseaux J, Csernok E, Rasmussen N, Moosig F, van Paassen P, Baslund B, et al. Detection of antineutrophil cytoplasmic antibodies (ANCAs): a multicentre European Vasculitis Study Group (EUVAS) evaluation of the value of indirect immunofluorescence (IIF) versus antigen-specific immunoassays. Ann Rheum Dis. 2017;76(4):647–53.

    Article  CAS  PubMed  Google Scholar 

  41. Mcadoo SP, Pusey CD. Anti-glomerular basement membrane disease. Clin J Am Soc Nephrol. 2017;12:1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Radice A, Trezzi B, Maggiore U, Pregnolato F, Stellato T, Napodano P, et al. Clinical usefulness of autoantibodies to M-type phospholipase A2 receptor (PLA2R) for monitoring disease activity in idiopathic membranous nephropathy (IMN). Autoimmun Rev. 2016;15(2):146–54.

    Article  CAS  PubMed  Google Scholar 

  43. Beck LHJ, Bonegio RGB, Lambeau G, Beck DM, Powell DW, Cummins TD, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med. 2009;361(1):11–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tomas NM, Beck LHJ, Meyer-Schwesinger C, Seitz-Polski B, Ma H, Zahner G, et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med. 2014;371(24):2277–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Paixao-Cavalcante D, Lopez-Trascasa M, Skattum L, Giclas PC, Goodship TH, de Cordoba SR, et al. Sensitive and specific assays for C3 nephritic factors clarify mechanisms underlying complement dysregulation. Kidney Int. 2012;82(10):1084–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Motyckova G, Murali M. Laboratory testing for cryoglobulins. Am J Hematol. 2011;86(6):500–2.

    Article  CAS  PubMed  Google Scholar 

  47. Wang H, Zheng C, Lu Y, Jiang Q, Yin R, Zhu P, et al. Urinary fibrinogen as a predictor of progression of CKD. Clin J Am Soc Nephrol. 2017;12(12):1922–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Y, Zheng C, Xu F, Liu Z. Urinary fibrinogen and renal tubulointerstitial fibrinogen deposition: discriminating between primary FSGS and minimal change disease. Biochem Biophys Res Commun. 2016;478(3):1147–52.

    Article  CAS  PubMed  Google Scholar 

  49. Roy S, Pitcock JA, Etteldorf JN. Prognosis of acute poststreptococcal glomerulonephritis in childhood: prospective study and review of the literature. Adv Pediatr Infect Dis. 1976;23:35–69.

    Google Scholar 

  50. Balasubramanian R, Marks SD. Paediatrics and international child health post-infectious glomerulonephritis. Paediatr Int Child Health. 2017;37(4):1–8.

    Article  Google Scholar 

Further Reading and Guidelines

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali M. Shendi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shendi, A.M. (2022). Laboratory Tests in Nephrology. In: Harber, M. (eds) Primer on Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-76419-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76419-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76418-0

  • Online ISBN: 978-3-030-76419-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics