Skip to main content

Non-invasive Removal of Phosphorus from Lakes Using Processed Calcite-Based Materials

  • Chapter
  • First Online:
Chemical Lake Restoration

Abstract

In this study, milled ground calcium carbonate (GCC) consisting of calcite is developed as an orthophosphate (OP) binding agent to be used in a strategy for non-invasive orthophosphate (OP) removal from eutrophic lakes. Planetary ball mill and 74 different grinding methods were applied differing in grinding time (0.5–24 h), grinding force (150–400 rpm) and mass of grinding balls (150–500 g). The obtained materials had  specific diameter d90 of 7.3–86.6 µm and specific surface area (SSA) of 4.9–24.0 m2/g. Grinding resulted in 98% OP removal, being five times higher compared to the initial GCC material (21%). Grinding substantially improved OP removal’s ability as compared to the source GCC, without using chemicals, and at low cost. Such GCC materials were used to develop a strategy for non-invasive OP removal from the aquatic environment  which assumes application of a GCC containing carrier into the water body and its subsequent removal. Three different solutions were analysed, differing in type and the adjustment of the carrier’s adhering to GCC. GCC efficiency on/in a carrier was reduced due to embedded GCC grains in glue (on laminates) or limited water exchange caused by the carrier (in bags). Technical conditions for two of the tested solutions allowed the effective use of GCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bańkowska-Sobczak A, Blazejczyk A, Eiche E, Fischer U, Popek Z (2020.) Phosphorus inactivation in lake sediments using calcite materials and controlled resuspension—mechanism and efficiency. Minerals 10(3):223. https://doi.org/10.3390/min10030223

  2. Bańkowska-Sobczak A, Brenk G, Burska D, Idźkowski J, Kozłowicz Ł, Kupiec JM, Powałowski S, Pryputniewicz-Flis D, Sklepik M (2019) Non-invasive phosphate removal from the lake water—principles, efficiency and non-target effects. In: Book of abstracts—11th symposium for European freshwater sciences, June 30–July 5, 2019, Zagreb, Croatia, p. 173. http://www.sefs11.biol.pmf.hr/book-of-abstracts/l. Accessed Sept 20

  3. Berg U (2001) Die Kalzitapplikation als interne Restaurierungsmaβnahme für eutrophierte Seen – ihre Optimierung und Bewertung. Technische Universität Kalsruhe (niepublikowana), Rozprawa doktorska

    Google Scholar 

  4. Berg U, Neumann T, Donnert D, Nüesch R, Stüben D (2004) Sediment capping in eutrophic lakes—efficiency of undisturbed calcite barriers to immobilize phosphorus. Appl Geochem 19:1759–1771

    Article  CAS  Google Scholar 

  5. Burska D, Pryputniewicz-Flis D, Bańkowska-Sobczak A, Brenk G, Woszczyk T (2019) The Efficiency of P-Removal from Natural Waters with Sorbents Placed in Water Permeable Nonwovens. IOP Conf Series Earth Environ Sci 362(1):1–10. https://doi.org/10.1088/1755-1315/362/1/012099

    Article  Google Scholar 

  6. Cooke GD, Welch EB, Peterson S, Nichols SA (2005) Restoration and management of lakes and reservoirs. CRC Press, Boca Raton. https://doi.org/10.1002/rrr.3450090207

    Article  Google Scholar 

  7. Cucarella V, Renman G (2009) Phosphorus sorption capacity of filter materials used for on-site wastewater treatment determined in batch experiments—a comparative study. J Environ Qual 38:381–392

    Article  CAS  Google Scholar 

  8. Čavajda V, Uhlík P, Derkowski A, Čaplovičová M, Madejová J, Mikula M, Ifka T (2015) Influence of grinding and sonication on the crystal structure of talc. Clays Clay Miner 63(4):311–327

    Article  Google Scholar 

  9. Danen-Louwerse HJ, Lijklema L, Coenraats M (1995) Coprecipitation of phosphate with calcium carbonate in Lake Veluwe. Water Res 29(7):1781–1785. https://doi.org/10.1016/0043-1354(94)00301-M

    Article  CAS  Google Scholar 

  10. Dithmer L, Nielsen UG, Lürling M, Spears BM, Yasseri S, Lundberg D, Moore A, Jensen ND, Reitzel K (2016) Responses in sediment phosphorus and lanthanum concentrations and composition across 10 lakes following applications of lanthanum modified bentonite. Water Res 97:101–110. https://doi.org/10.1016/j.watres.2016.02.011

    Article  CAS  Google Scholar 

  11. Dittrich M, Koschel R (2002) Interactions between calcite precipitation (natural and artificial) and phosphorus cycle in the hardwater lake. Hydrobiologia 469:49–57. https://doi.org/10.1023/A:1015571410442

    Article  CAS  Google Scholar 

  12. Dittrich M, Gabriel O, Rutzen C, Koschel R (2011) Lake restoration by hypolimnetic Ca(OH)2 treatment: impact on phosphorus sedimentation and release from sediment. Sci Total Environ 409:1504–1515. https://doi.org/10.1016/j.scitotenv.2011.01.006

    Article  CAS  Google Scholar 

  13. Dondajewska R, Gołdyn R, Kowalczewska-Madura K, Kozak A, Romanowicz-Brzozowska W, Rosińska J, Budzyńska A, Podsiadłowski S (2020) Hypertrophic lakes and the results of their restoration in Western Poland. In: Korzeniewska E, Harnisz M (eds) Polish river basins and lakes—Part II. The handbook of environmental chemistry, vol 87. Springer, Cham, pp 373–399. https://doi.org/10.1007/978-3-030-12139-6_17

  14. Dunalska J, Wiśniewski G (2016) Can we stop the degradation of lakes? Innovative approaches in lake restoration. Ecol Eng 95:714–722. https://doi.org/10.1016/j.ecoleng.2016.07.017

    Article  Google Scholar 

  15. Eiche E, Berg U, Song Y, Neumann T (2008) Fixation and phase transformation of phosphate at calcite surfaces—implications for eutrophic lake restoration. In: Proceedings of ninth international congress for applied mineralogy, Brisbane, pp 1–10

    Google Scholar 

  16. Emami AH, Bafghi MS, Vahdati Khaki J, Zakeri A (2009) The effect of grinding time on the specific surface area during intensive grinding of mineral powders. Iranian J Mater Sci Eng 6(2):30–36

    Google Scholar 

  17. Freeman JS, Rowell DL (1981) The adsorption and precipitation of phosphate onto calcite. J Soil Sci 32:75–84

    Article  CAS  Google Scholar 

  18. Gammage RB, Glasson DR (1976) The effect of grinding on the polymorphs of calcium carbonate. J Colloid Interface Sci 55(2):396–401

    Article  CAS  Google Scholar 

  19. Hart B, Roberts S, James R, Taylor J, Donnert D, Furrer R (2003) Use of active barriers to reduce eutrophication problems in urban lakes. Water Sci Technol 47(7–8):157–163. https://doi.org/10.2166/wst.2003.0684

    Article  CAS  Google Scholar 

  20. Heberling F, Bosbach D, Eckhardt J-D, Fischer U, Glowacky J, Haist M, Kramar U, Loos S, Müller HS, Neumann T, Pust C, Schäfer T, Stelling J, Ukrainczyk M, Vinograd V, Vučak M, Winkler B (2014) Reactivity of the calcite-water-interface, from molecular scale processes to geochemical engineering. Appl Geochem 45(1):158–119

    Article  CAS  Google Scholar 

  21. Hinedi ZR, Goldberg S, Chang AC, Yesinowski JP (1992) A 31P and 1H MAS NMR study of phosphate sorption onto calcium carbonate. J Colloid Interface Sci 152(1):141–160

    Article  CAS  Google Scholar 

  22. House WA, Donaldson L (1986) Adsorption and coprecipitation of phosphate on calcite. J Colloid Interface Sci 112(2):309–324

    Article  CAS  Google Scholar 

  23. Hupfer M (2004) Bedeutung Sedimentstratigraphischer Untersuchungen für die Seentherapie. Studia Quaternaria 21:171–178. http://www.studia.quaternaria.pan.pl/pdfs/sq21/s_171_178.pdf. Accessed Aug 25 20

  24. Hupfer M, Hilt S (2008) Lake restoration. In: Jørgensen SE, Fath BD (eds) Encyclopedia of ecology. Elsevier, Amsterdam, pp 2080–2093

    Google Scholar 

  25. Huser BJ, Egemose S, Harper H, Hupfer M, Jensen H, Pilgrim KM, Reitzel K, Rydin E, Futter M (2016) Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality. Water Res 97:122–132. https://doi.org/10.1016/j.watres.2015.06.051

    Article  CAS  Google Scholar 

  26. Karageorgiou K, Paschalis M, Anastassakis GN (2007) Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. J Hazard Mater 139(3):447–452. https://doi.org/10.1016/j.jhazmat.2006.02.038

    Article  CAS  Google Scholar 

  27. Kuster AC, Kuster AT, Huser BJ (2020) A comparison of aluminum dosing methods for reducing sediment phosphorus release in lakes. J Environ Manage 261: https://doi.org/10.1016/j.jenvman.2020.110195

    Article  CAS  Google Scholar 

  28. Łopata M, Augustyniak R, Grochowska J, Parszuto K, Tandyrak R, Wiśniewski G (2020) Behavior of aluminum compounds in soft-water lakes subjected to experimental reclamation with polyaluminum chloride. Water Air Soil Pollut 231:358. https://doi.org/10.1007/s11270-020-04708-6

    Article  CAS  Google Scholar 

  29. Meis S, Spears BM, Maberly SC, O’Malley MB, Perkins RG (2012) Sediment Amendment with Phoslock® in Clatto Reservoir (Dundee, UK): investigating changes in sediment elemental composition and phosphorus fractionation. J Environ Manage 93:185–193. https://doi.org/10.1016/j.jenvman.2011.09.015

    Article  CAS  Google Scholar 

  30. Miskimmin B, Donahue W, Watson D (1995) Invertebrate community response to experimental lime (Ca(OH)2) treatment of an eutrophic pond. Aquat Sci 57(1):20–30. https://doi.org/10.1007/BF00878024

    Article  Google Scholar 

  31. Murphy TP, Hall KJ, Yesaki I (1983) Coprecipitation of phosphate with calcite in a naturally eutrophic lake. Limnol Oceanogr 28(1):58–69. https://doi.org/10.4319/lo.1983.28.1.0058

    Article  CAS  Google Scholar 

  32. van Oosterhout F, Waajen G, Yasseri S, Manzi Marinho M, Pessoa Noyma N, Mucci M, Douglas G, Lürling M (2020) Lanthanum in Water, Sediment, Macrophytes and chironomid larvae following application of Lanthanum modified bentonite to lake Rauwbraken (The Netherlands). Sci Total Environ 706: https://doi.org/10.1016/j.scitotenv.2019.135188

    Article  CAS  Google Scholar 

  33. Prepas EE, Pinel-Alloul B, Chambers PA, Murphy TP, Reedyk S, Sandland G, Serediak M (2001) Lime treatment and its effects on the chemistry and biota of hardwater eutrophic lakes. Freshw Biol 46(8):1049–1060. https://doi.org/10.1046/j.1365-2427.2001.00788.x

    Article  CAS  Google Scholar 

  34. Reedyk S, Prepas EE, Chambers PA (2001) Effects of single Ca(OH)2 doses on phosphorus concentration and macrophyte biomass of two boreal eutrophic lakes over 2 years. Freshw Biol 46(8):1075–1087

    Article  CAS  Google Scholar 

  35. Reitzel K, Andersen FT, Egemose S, Jensen HS (2013) Phosphate adsorption by lanthanum modified bentonite clay in fresh and brackish water. Water Res 47:2787–2796. https://doi.org/10.1016/j.watres.2013.02.051

    Article  CAS  Google Scholar 

  36. Reitzel K, Jensen HS, Egemose S (2013) pH dependent dissolution of sediment aluminum in six Danish lakes treated with aluminium. Water Res 47(3):1409–1420

    Article  CAS  Google Scholar 

  37. Robb M, Greenop B, Goss Z, Douglas G, Adeney J (2003) Application of Phoslock™, an innovative phosphorus binding clay, to two Western Australian waterways: preliminary findings. Hydrobiologia 494(1–3):237–243

    Article  CAS  Google Scholar 

  38. Sánchez-Soto PJ, Justo A, Pérez-Rodríguez JL (1994) Structural alteration of pyrophyllite by dry grinding as studied by IR spectroscopy. J Mater Sci Lett 13:915–918

    Article  Google Scholar 

  39. Spears BM, Lürling M, Yasseri S, Castro-Castellon AT, Gibbs M, Meis S, McDonald C, McIntosh J, Sleep D, van Oosterhout F (2013) Lake responses following lanthanum-modified bentonite clay (Phoslock®) application: an analysis of water column lanthanum data from 16 case study lakes. Water Res 47(15):5930–5942

    Article  CAS  Google Scholar 

  40. Stüben D, Walpersdorf E, Voss K, Rönicke H, Schimmele M, Baborowski M, Luther G, Elsner W (1998) Application of lake marl at Lake Arendsee, NE Germany: first results of a geochemical monitoring during the restoration experiment. Sci Total Environ 218:33–44

    Article  Google Scholar 

  41. Sø HU, Postma D, Jakobsen R, Larsen F (2011) Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling. Geochim Cosmochim Acta 75(10):2911–2923

    Article  Google Scholar 

  42. Tsai W-T (2013) Microstructural characterization of calcite-based powder materials prepared by planetary ball milling. Materials 6:3361–3372. https://doi.org/10.3390/ma6083361

    Article  CAS  Google Scholar 

  43. Walpersdorf E, Neumann T, Stüben D (2004) Efficiency of natural calcite precipitation compared to lake marl application used for water quality improvement in an eutrophic lake. Appl Geochem 19:1687–1698. https://doi.org/10.1016/j.apgeochem.2004.04.007

    Article  CAS  Google Scholar 

  44. Wauer G, Teien H-C (2010) Risk of acute toxicity forfish during aluminium application to hardwater lakes. Sci Total Environ 408:4020–4025. https://doi.org/10.1016/j.scitotenv.2010.05.033

    Article  CAS  Google Scholar 

  45. Weismantel GE, Armstead JC (1999) Whiting (calcium carbonate). In: McKetta JJ (ed) Encyclopedia of chemical processing and design: volume 67—water and wastewater treatment: protective coating systems to zeolite. CRC Press, Boca Raton

    Google Scholar 

  46. Welch EB, Gibbons HL, Brattebo SK, Corson-Rikert HA (2017) Distribution of aluminium and phosphorus fractions following alum treatments in a large shallow lake. Lake Reserv Manag 33:198–204. https://doi.org/10.1080/10402381.2016.1276653

    Article  CAS  Google Scholar 

  47. Xu N, Chen M, Zhou K, Wang Y, Yin H, Chen Z (2014) Retention of phosphorus on calcite and dolomite: Speciation and modeling. RSC Advances 4(66):3525–35214. https://doi.org/10.1039/C4RA05461J

    Article  CAS  Google Scholar 

  48. Yavus Ö, Guzel R, Aydin F, Tegin I, Ziyadanogullari R (2007) Removal of cadmium and lead from aqueous solution by calcite. Pol J Environ Stud 16(3):467–471

    Google Scholar 

  49. Zamparas M, Kyriakopoulos GL, Drosos M, Kapsalis VC, Kalavrouziotis IK (2020) Novel composite materials for lake restoration: a new approach impacting on ecology and circular economy. Sustainability 12(8):1–17. https://doi.org/10.3390/su12083397

    Article  Google Scholar 

  50. Zhang Y, Prepas EE (1996) Short-term effects of Ca(OH)2 additions on phytoplankton biomass: a comparison of laboratory and in situ experiments. Water Res 30(5):1285–1294. https://doi.org/10.1016/0043-1354(95)00273-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

This research was financially supported by The National Centre of Research and Development No GEKON2/03/267948/21/2016 and European Union’s and Republic of Poland within the Smart Growth Operational Programme 2014–2020, Priority axis I: Support for R&D activity of enterprises, R&D projects of enterprises, Industrial Research and Development Works (grant number POIR.01.01.01-00-0981/17-00).

Corresponding author

Correspondence to Agnieszka Bańkowska-Sobczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pryputniewicz-Flis, D., Bańkowska-Sobczak, A., Burska, D., Idźkowski, J., Kozłowicz, Ł., Brenk, G. (2021). Non-invasive Removal of Phosphorus from Lakes Using Processed Calcite-Based Materials. In: Zamparas, M.G., Kyriakopoulos, G.L. (eds) Chemical Lake Restoration. Springer, Cham. https://doi.org/10.1007/978-3-030-76380-0_6

Download citation

Publish with us

Policies and ethics