Skip to main content

Physiology of Transcranial Direct and Alternating Current Stimulation

  • Chapter
  • First Online:
Transcranial Direct Current Stimulation in Neuropsychiatric Disorders

Abstract

Non-invasive brain stimulation with weak electrical currents (transcranial electrical stimulation, tES), including direct (transcranial direct current stimulation, tDCS) or alternating current stimulation (transcranial alternating current stimulation, tACS), has been developed in neuroscience research in the last decades and since then has become an effective tool to modulate cortical excitability and oscillatory brain activity, induce neuroplasticity and alter and modulate cognition and behaviour in humans. The primary effect of tES is a subthreshold modulation of resting membrane potentials, which results in alterations of cortical excitability and spontaneous cortical activity. For tDCS, sufficiently long stimulation results in long-lasting neuroplastic after-effects. Beyond these local effects, tDCS induces modifications of functional cortical and subcortical networks. On the other hand, tACS is presumed to primarily entrain oscillatory cortical activity, dependent on the frequency of stimulation, and has been widely applied to investigate motor and cognitive functions. Here we provide an overview about physiological mechanisms of tDCS and tACS and review their potential application in studies of brain function and cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 10 November 2021

    A correction has been published.

References

  1. Ziemann U, et al. Consensus: motor cortex plasticity protocols. Brain Stimul. 2008;1:164–82.

    Article  PubMed  Google Scholar 

  2. Nitsche MA, Paulus W. Transcranial direct current stimulation--update 2011. Restor Neurol Neurosci. 2011;29:463–92.

    PubMed  Google Scholar 

  3. Bindman LJ, Lippold OC, Redfearn JW. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 1964;172:369–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rush S, Driscoll DA. Current distribution in the brain from surface electrodes. Anesth Analg. 1968;47:717–23.

    Article  CAS  PubMed  Google Scholar 

  5. Dymond AM, Coger RW, Serafetinides EA. Intracerebral current levels in man during electrosleep therapy. Biol Psychiatry. 1975;10:101–4.

    CAS  PubMed  Google Scholar 

  6. Pfurtscheller G. Spectrum analysis of EEG: before, during and after extracranial stimulation in man. Elektromed Biomed Tech. 1970;15:225–30.

    Article  CAS  PubMed  Google Scholar 

  7. Costain R, Redfearn JW, Lippold OC. A controlled trial of the therapeutic effect of polarization of the brain in depressive illness. Br J Psychiatry. 1964;110:786–99.

    Article  CAS  PubMed  Google Scholar 

  8. Lippold OC, Redfearn JW. Mental changes resulting from the passage of small direct currents through the human brain. Br J Psychiatry. 1964;110:768–72.

    Article  CAS  PubMed  Google Scholar 

  9. Lolas F. Brain polarization: behavioral and therapeutic effects. Biol Psychiatry. 1977;12:37–47.

    CAS  PubMed  Google Scholar 

  10. Elbert T, Lutzenberger W, Rockstroh B, Birbaumer N. The influence of low-level transcortical DC-currents on response speed in humans. Int J Neurosci. 1981;14:101–14.

    Article  CAS  PubMed  Google Scholar 

  11. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57:1899–901.

    Article  CAS  PubMed  Google Scholar 

  13. Nitsche MA, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1:206–23.

    Article  PubMed  Google Scholar 

  14. Woods AJ, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127:1031–48.

    Article  CAS  PubMed  Google Scholar 

  15. Bikson M, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9:641–61.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nitsche MA, et al. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol. 2003;114:600–4.

    Article  PubMed  Google Scholar 

  17. Nitsche MA, et al. MRI study of human brain exposed to weak direct current stimulation of the frontal cortex. Clin Neurophysiol. 2004;115:2419–23.

    Article  CAS  PubMed  Google Scholar 

  18. Iyer MB, et al. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology. 2005;64:872–5.

    Article  CAS  PubMed  Google Scholar 

  19. Liebetanz D, et al. Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol. 2009;120:1161–7.

    Article  PubMed  Google Scholar 

  20. Ambrus GG, et al. The fade-in--short stimulation--fade out approach to sham tDCS--reliable at 1 mA for naïve and experienced subjects, but not investigators. Brain Stimul. 2012;5:499–504.

    Article  PubMed  Google Scholar 

  21. Ambrus GG, Antal A, Paulus W. Comparing cutaneous perception induced by electrical stimulation using rectangular and round shaped electrodes. Clin Neurophysiol. 2011;122:803–7.

    Article  PubMed  Google Scholar 

  22. Paulus W. On the difficulties of separating retinal from cortical origins of phosphenes when using transcranial alternating current stimulation (tACS). Clin Neurophysiol. 2010;121:987–91.

    Article  PubMed  Google Scholar 

  23. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117:845–50.

    Article  PubMed  Google Scholar 

  24. Guleyupoglu B, Febles N, Minhas P, Hahn C, Bikson M. Reduced discomfort during high-definition transcutaneous stimulation using 6% benzocaine. Front Neuroeng. 2014;7:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guarienti F, et al. Reducing transcranial direct current stimulation-induced erythema with skin pretreatment: considerations for sham-controlled clinical trials. Neuromodulation. 2015;18:261–5.

    Article  PubMed  Google Scholar 

  26. Purpura DP, Mcmurtry JG. Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol. 1965;28:166–85.

    Article  CAS  PubMed  Google Scholar 

  27. Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol. 1962;5:436–52.

    Article  CAS  PubMed  Google Scholar 

  28. Kabakov AY, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A. Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J Neurophysiol. 2012;107:1881–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Accornero N, Li Voti P, La Riccia M, Gregori B. Visual evoked potentials modulation during direct current cortical polarization. Exp Brain Res. 2007;178:261–6.

    Article  PubMed  Google Scholar 

  30. Roth BJ. Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng. 1994;22:253–305.

    CAS  PubMed  Google Scholar 

  31. Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998;9:2257–60.

    Article  CAS  PubMed  Google Scholar 

  32. Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci. 2004;45:702–7.

    Article  PubMed  Google Scholar 

  33. Moliadze V, Antal A, Paulus W. Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clin Neurophysiol. 2010;121:2165–71.

    Article  PubMed  Google Scholar 

  34. Lang N, et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain. Eur J Neurosci. 2005;22:495–504.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nitsche MA, et al. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol. 2007;97:3109–17.

    Article  CAS  PubMed  Google Scholar 

  36. Datta A, et al. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2:201–7, 207.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cogiamanian F, Marceglia S, Ardolino G, Barbieri S, Priori A. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur J Neurosci. 2007;26:242–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kuo HI, et al. Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study. Brain Stimul. 2013;6:644–8.

    Article  PubMed  Google Scholar 

  39. Borckardt JJ, et al. A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception. J Pain. 2012;13:112–20.

    Article  PubMed  Google Scholar 

  40. Fischer DB, et al. Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. Neuroimage. 2017;157:34–44.

    Article  CAS  PubMed  Google Scholar 

  41. Dmochowski JP, Datta A, Bikson M, Su Y, Parra LC. Optimized multi-electrode stimulation increases focality and intensity at target. J Neural Eng. 2011;8:046011.

    Article  PubMed  Google Scholar 

  42. Ruffini G, Fox MD, Ripolles O, Miranda PC, Pascual-Leone A. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. Neuroimage. 2014;89:216–25.

    Article  PubMed  Google Scholar 

  43. Puonti O, Saturnino GB, Madsen KH, Thielscher A. Value and limitations of intracranial recordings for validating electric field modeling for transcranial brain stimulation. Neuroimage. 2020;208:116431.

    Article  PubMed  Google Scholar 

  44. Kuo MF, Nitsche MA. Effects of transcranial electrical stimulation on cognition. Clin EEG Neurosci. 2012;43:192–9.

    Article  PubMed  Google Scholar 

  45. Shin YI, Foerster Á, Nitsche MA. Transcranial direct current stimulation (tDCS) – application in neuropsychology. Neuropsychologia. 2015;69:154–75.

    Article  PubMed  Google Scholar 

  46. Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591:1987–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mosayebi Samani M, Agboada D, Jamil A, Kuo MF, Nitsche MA. Titrating the neuroplastic effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex. Cortex. 2019;119:350–61.

    Article  PubMed  Google Scholar 

  48. Moliadze V, et al. Stimulation intensities of transcranial direct current stimulation have to be adjusted in children and adolescents. Clin Neurophysiol. 2015;126:1392–9.

    Article  PubMed  Google Scholar 

  49. Monte-Silva K, et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 2013;6:424–32.

    Article  PubMed  Google Scholar 

  50. Monte-Silva K, Kuo MF, Liebetanz D, Paulus W, Nitsche MA. Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). J Neurophysiol. 2010;103:1735–40.

    Article  PubMed  Google Scholar 

  51. Minhas P, Bikson M, Woods AJ, Rosen AR, Kessler SK. Transcranial direct current stimulation in pediatric brain: a computational modeling study. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:859–62.

    PubMed Central  Google Scholar 

  52. Boggio PS, et al. Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neurosci Lett. 2006;404:232–6.

    Article  CAS  PubMed  Google Scholar 

  53. Cuypers K, et al. Is motor learning mediated by tDCS intensity. PLoS One. 2013;8:e67344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55:187–99.

    Article  CAS  PubMed  Google Scholar 

  55. Rahman A, et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol. 2013;591:2563–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nitsche MA, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol. 2005;568:291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nitsche MA, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003;553:293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nitsche MA, et al. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur J Neurosci. 2004;19:2720–6.

    Article  PubMed  Google Scholar 

  59. Antal A, Paulus W. Investigating neuroplastic changes in the human brain induced by transcranial direct (tDCS) and alternating current (tACS) stimulation methods. Clin EEG Neurosci. 2012;43:175.

    Article  PubMed  Google Scholar 

  60. Boros K, Poreisz C, Münchau A, Paulus W, Nitsche MA. Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans. Eur J Neurosci. 2008;27:1292–300.

    Article  PubMed  Google Scholar 

  61. Nitsche MA, et al. Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology. 2004;29:1573–8.

    Article  CAS  PubMed  Google Scholar 

  62. Islam N, Aftabuddin M, Moriwaki A, Hattori Y, Hori Y. Increase in the calcium level following anodal polarization in the rat brain. Brain Res. 1995;684:206–8.

    Article  CAS  PubMed  Google Scholar 

  63. Stagg CJ, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci. 2009;29:5202–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fritsch B, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66:198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reymann KG, Frey JU. The late maintenance of hippocampal LTP: requirements, phases, “synaptic tagging”, “late-associativity” and implications. Neuropharmacology. 2007;52:24–40.

    Article  CAS  PubMed  Google Scholar 

  66. Agboada D, Mosayebi Samani M, Jamil A, Kuo MF, Nitsche MA. Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex. Sci Rep. 2019;9:18185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jamil A, et al. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J Physiol. 2017;595:1273–88.

    Article  CAS  PubMed  Google Scholar 

  68. Jamil A, et al. Current intensity- and polarity-specific online and aftereffects of transcranial direct current stimulation: an fMRI study. Hum Brain Mapp. 2020;41:1644–66.

    Article  PubMed  Google Scholar 

  69. Lisman J, Three E. Ca2+ levels affect plasticity differently: the LTP zone, the LTD zone and no man’s land. J Physiol. 2001;532:285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Misonou H, et al. Regulation of ion channel localization and phosphorylation by neuronal activity. Nat Neurosci. 2004;7:711–8.

    Article  CAS  PubMed  Google Scholar 

  71. Nitsche MA, Müller-Dahlhaus F, Paulus W, Ziemann U. The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs. J Physiol. 2012;590:4641–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nitsche MA, et al. Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur J Neurosci. 2006;23:1651–7.

    Article  PubMed  Google Scholar 

  73. Kuo MF, Paulus W, Nitsche MA. Boosting focally-induced brain plasticity by dopamine. Cereb Cortex. 2008;18:648–51.

    Article  PubMed  Google Scholar 

  74. Monte-Silva K, Liebetanz D, Grundey J, Paulus W, Nitsche MA. Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. J Physiol. 2010;588:3415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fresnoza S, et al. Dosage-dependent effect of dopamine D2 receptor activation on motor cortex plasticity in humans. J Neurosci. 2014;34:10701–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nitsche MA, et al. D1-receptor impact on neuroplasticity in humans. J Neurosci. 2009;29:2648–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fresnoza S, Paulus W, Nitsche MA, Kuo MF. Nonlinear dose-dependent impact of D1 receptor activation on motor cortex plasticity in humans. J Neurosci. 2014;34:2744–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kuo MF, Grosch J, Fregni F, Paulus W, Nitsche MA. Focusing effect of acetylcholine on neuroplasticity in the human motor cortex. J Neurosci. 2007;27:14442–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Batsikadze G, Paulus W, Grundey J, Kuo MF, Nitsche MA. Effect of the nicotinic α4β2-receptor partial agonist varenicline on non-invasive brain stimulation-induced neuroplasticity in the human motor cortex. Cereb Cortex. 2015;25:3249–59.

    Article  PubMed  Google Scholar 

  80. Thirugnanasambandam N, et al. Nicotinergic impact on focal and non-focal neuroplasticity induced by non-invasive brain stimulation in non-smoking humans. Neuropsychopharmacology. 2011;36:879–86.

    Article  CAS  PubMed  Google Scholar 

  81. Lugon MD, et al. Mechanisms of nicotinic modulation of glutamatergic neuroplasticity in humans. Cereb Cortex. 2017;27:544–53.

    PubMed  Google Scholar 

  82. Nitsche MA, et al. Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biol Psychiatry. 2009;66:503–8.

    Article  CAS  PubMed  Google Scholar 

  83. Kuo HI, et al. Chronic enhancement of serotonin facilitates excitatory transcranial direct current stimulation-induced neuroplasticity. Neuropsychopharmacology. 2016;41:1223–30.

    Article  CAS  PubMed  Google Scholar 

  84. Kuo HI, et al. Acute and chronic effects of noradrenergic enhancement on transcranial direct current stimulation-induced neuroplasticity in humans. J Physiol. 2017;595:1305–14.

    Article  CAS  PubMed  Google Scholar 

  85. Matsunaga K, Nitsche MA, Tsuji S, Rothwell JC. Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol. 2004;115:456–60.

    Article  PubMed  Google Scholar 

  86. Dieckhöfer A, et al. Transcranial direct current stimulation applied over the somatosensory cortex – differential effect on low and high frequency SEPs. Clin Neurophysiol. 2006;117:2221–7.

    Article  PubMed  Google Scholar 

  87. Zaehle T, Beretta M, Jäncke L, Herrmann CS, Sandmann P. Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence. Exp Brain Res. 2011;215:135–40.

    Article  PubMed  Google Scholar 

  88. Hill AT, Rogasch NC, Fitzgerald PB, Hoy KE. Effects of prefrontal bipolar and high-definition transcranial direct current stimulation on cortical reactivity and working memory in healthy adults. Neuroimage. 2017;152:142–57.

    Article  PubMed  Google Scholar 

  89. Romero Lauro LJ, et al. TDCS increases cortical excitability: direct evidence from TMS-EEG. Cortex. 2014;58:99–111.

    Article  PubMed  Google Scholar 

  90. Gordon PC, et al. Modulation of cortical responses by transcranial direct current stimulation of dorsolateral prefrontal cortex: a resting-state EEG and TMS-EEG study. Brain Stimul. 2018;11:1024–32.

    Article  PubMed  Google Scholar 

  91. Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol. 2014;592:3345–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Batsikadze G, et al. Effects of cerebellar transcranial direct current stimulation on cerebellar-brain inhibition in humans: a systematic evaluation. Brain Stimul. 2019;12:1177–86.

    Article  PubMed  Google Scholar 

  93. Kirimoto H, et al. Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices. Clin Neurophysiol. 2011;122:777–83.

    Article  PubMed  Google Scholar 

  94. Rivera-Urbina GN, et al. Parietal transcranial direct current stimulation modulates primary motor cortex excitability. Eur J Neurosci. 2015;41:845–55.

    Article  PubMed  Google Scholar 

  95. Polanía R, Paulus W, Antal A, Nitsche MA. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. Neuroimage. 2011;54:2287–96.

    Article  PubMed  Google Scholar 

  96. Polanía R, Nitsche MA, Paulus W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp. 2011;32:1236–49.

    Article  PubMed  Google Scholar 

  97. Polanía R, Paulus W, Nitsche MA. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp. 2012;33:2499–508.

    Article  PubMed  Google Scholar 

  98. Keeser D, et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci. 2011;31:15284–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Peña-Gómez C, et al. Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI. Brain Stimul. 2012;5:252–63.

    Article  PubMed  Google Scholar 

  100. Meinzer M, et al. Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation. J Neurosci. 2012;32:1859–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Helfrich RF, et al. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. 2014;24:333–9.

    Article  CAS  PubMed  Google Scholar 

  102. Witkowski M, et al. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS). Neuroimage. 2016;140:89–98.

    Article  PubMed  Google Scholar 

  103. Reato D, Rahman A, Bikson M, Parra LC. Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front Hum Neurosci. 2013;7:687.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Antal A, et al. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008;1:97–105.

    Article  PubMed  Google Scholar 

  105. Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008;28:14147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Moliadze V, Atalay D, Antal A, Paulus W. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul. 2012;5:505–11.

    Article  PubMed  Google Scholar 

  107. Vossen A, Gross J, Thut G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment. Brain Stimul. 2015;8:499–508.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Fröhlich F, McCormick DA. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;67(1):129–43. https://doi.org/10.1016/j.neuron.2010.06.005.

  109. Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, Buzsáki G. Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci. 2010;30(34):11476–85. https://doi.org/10.1523/JNEUROSCI.5252-09.2010.

  110. Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc Natl Acad Sci U S A. 2019;116:5747–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010;5:e13766.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Neuling T, Rach S, Herrmann CS. Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front Hum Neurosci. 2013;7:161.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Voss U, et al. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat Neurosci. 2014;17:810–2.

    Article  CAS  PubMed  Google Scholar 

  114. Wischnewski M, et al. NMDA receptor-mediated motor cortex plasticity after 20 Hz transcranial alternating current stimulation. Cereb Cortex. 2019;29(7):2924–31.

    Article  CAS  PubMed  Google Scholar 

  115. Feurra M, et al. Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J Neurosci. 2011;31:12165–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schutter DJ, Hortensius R. Brain oscillations and frequency-dependent modulation of cortical excitability. Brain Stimul. 2011;4:97–103.

    Article  PubMed  Google Scholar 

  117. Chaieb L, Antal A, Paulus W. Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability. Restor Neurol Neurosci. 2011;29:167–75.

    PubMed  Google Scholar 

  118. Kanai R, Chaieb L, Antal A, Walsh V, Paulus W. Frequency-dependent electrical stimulation of the visual cortex. Curr Biol. 2008;18:1839–43.

    Article  CAS  PubMed  Google Scholar 

  119. Laczó B, Antal A, Niebergall R, Treue S, Paulus W. Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. Brain Stimul. 2012;5:484–91.

    Article  PubMed  Google Scholar 

  120. Pogosyan A, Gaynor LD, Eusebio A, Brown P. Boosting cortical activity at Beta-band frequencies slows movement in humans. Curr Biol. 2009;19:1637–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Joundi RA, Jenkinson N, Brittain JS, Aziz TZ, Brown P. Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol. 2012;22:403–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Moisa M, Polania R, Grueschow M, Ruff CC. Brain network mechanisms underlying motor enhancement by transcranial entrainment of gamma oscillations. J Neurosci. 2016;36:12053–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wach C, et al. Effects of 10 Hz and 20 Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behav Brain Res. 2013;241:1–6.

    Article  CAS  PubMed  Google Scholar 

  124. Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11:267–9.

    Article  PubMed  Google Scholar 

  125. Sela T, Kilim A, Lavidor M. Transcranial alternating current stimulation increases risk-taking behavior in the balloon analog risk task. Front Neurosci. 2012;6:22.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Santarnecchi E, et al. Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. Curr Biol. 2013;23:1449–53.

    Article  CAS  PubMed  Google Scholar 

  127. Brittain JS, Probert-Smith P, Aziz TZ, Brown P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol. 2013;23:436–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Brignani D, Ruzzoli M, Mauri P, Miniussi C. Is transcranial alternating current stimulation effective in modulating brain oscillations. PLoS One. 2013;8:e56589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Strüber D, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception. Brain Topogr. 2014;27:158–71.

    Article  PubMed  Google Scholar 

  130. Polanía R, Paulus W, Nitsche MA. Noninvasively decoding the contents of visual working memory in the human prefrontal cortex within high-gamma oscillatory patterns. J Cogn Neurosci. 2012;24:304–14.

    Article  PubMed  Google Scholar 

  131. Garside P, Arizpe J, Lau CI, Goh C, Walsh V. Cross-hemispheric alternating current stimulation during a nap disrupts slow wave activity and associated memory consolidation. Brain Stimul. 2015;8:520–7.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Reinhart RMG, Nguyen JA. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci. 2019;22:820–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Polanía R, Krajbich I, Grueschow M, Ruff CC. Neural oscillations and synchronization differentially support evidence accumulation in perceptual and value-based decision making. Neuron. 2014;82:709–20.

    Article  PubMed  Google Scholar 

  134. Polanía R, Moisa M, Opitz A, Grueschow M, Ruff CC. The precision of value-based choices depends causally on fronto-parietal phase coupling. Nat Commun. 2015;6:8090.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Nitsche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polania, R., Kuo, MF., Nitsche, M.A. (2021). Physiology of Transcranial Direct and Alternating Current Stimulation. In: Brunoni, A.R., Nitsche, M.A., Loo, C.K. (eds) Transcranial Direct Current Stimulation in Neuropsychiatric Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-76136-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76136-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76135-6

  • Online ISBN: 978-3-030-76136-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics