Skip to main content

Empirical Fourier Decomposition for Time-Domain Signal Decomposition

  • Conference paper
  • First Online:
Topics in Modal Analysis & Testing, Volume 8
  • 434 Accesses

Abstract

Signal decomposition is an effective tool to assist the identification of modal information in time-domain signals. Two signal decomposition methods, including the empirical wavelet transform (EWT) and Fourier decomposition method (FDM), have been developed based on Fourier theory. However, the EWT can suffer from a mode mixing problem for signals with closely spaced modes, and decomposition results by FDM can suffer from an inconsistency problem. An accurate adaptive signal decomposition method, called the empirical Fourier decomposition (EFD), is proposed to solve the problems in this work. The proposed EFD combines the uses of an improved Fourier spectrum segmentation technique and an ideal filter bank. The segmentation technique can solve the inconsistency problem by predefining the number of modes in a signal to be decomposed, and filter functions in the ideal filter bank have no transition phases, which can solve the mode mixing problem. A numerical investigation is conducted to study the accuracy of the EFD. It is shown that the EFD can yield an accurate and consistent decomposition result for a signal with closely spaced modes, compared with decomposition results by the EWT, FDM, variational mode decomposition, and empirical mode decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharyya, A., Pachori, R.B.: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Trans. Biomed. Eng. 64(9), 2003–2015 (2017)

    Article  Google Scholar 

  2. Li, F., Zhang, B., Verma, S., Marfurt, K.J.: Seismic signal denoising using thresholded variational mode decomposition. Expl. Geophys. 49(4), 450–461 (2018)

    Article  Google Scholar 

  3. Pan, J., Chen, J., Zi, Y., Li, Y., He, Z.: Mono-component feature extraction for mechanical fault diagnosis using modified empirical wavelet transform via data-driven adaptive Fourier spectrum segment. Mech. Syst. Signal Process. 72, 160–183 (2016)

    Article  Google Scholar 

  4. Chen, S., Yang, Y., Peng, Z., Dong, X., Zhang, W., Meng, G.: Adaptive chirp mode pursuit: algorithm and applications. Mech. Syst. Signal Process. 116, 566–584 (2019)

    Article  Google Scholar 

  5. Upadhyay, A., Pachori, R.: Speech enhancement based on mEMD-VMD method. Electron. Lett. 53(7), 502–504 (2017)

    Article  Google Scholar 

  6. Iatsenko, D., McClintock, P.V., Stefanovska, A.: Nonlinear mode decomposition: a noise-robust, adaptive decomposition method. Phys. Rev. E 92(3), 032916 (2015)

    Article  MathSciNet  Google Scholar 

  7. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  8. Rilling, G., Flandrin, P., Goncalves, P., et al.: On empirical mode decomposition and its algorithms. In: IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, vol. 3, NSIP-03, Grado (I), pp. 8–11 (2003)

    Google Scholar 

  9. Rato, R., Ortigueira, M.D., Batista, A.: On the HHT, its problems, and some solutions. Mech. Syst. Signal Process. 22(6), 1374–1394 (2008)

    Article  Google Scholar 

  10. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(01), 1–41 (2009)

    Article  Google Scholar 

  11. Torres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, P.: A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4144–4147. IEEE, New York (2011)

    Google Scholar 

  12. Li, H., Li, Z., Mo, W.: A time varying filter approach for empirical mode decomposition. Signal Process. 138, 146–158 (2017)

    Article  Google Scholar 

  13. Dragomiretskiy, K., Zosso, D.: Variational mode decomposition. IEEE Trans. Signal Process. 62(3), 531–544 (2013)

    Article  MathSciNet  Google Scholar 

  14. McNeill, S.: Decomposing a signal into short-time narrow-banded modes. J. Sound Vib. 373, 325–339 (2016)

    Article  Google Scholar 

  15. Chen, S., Dong, X., Peng, Z., Zhang, W., Meng, G.: Nonlinear chirp mode decomposition: a variational method. IEEE Trans. Signal Process. 65(22), 6024–6037 (2017)

    Article  MathSciNet  Google Scholar 

  16. Gilles, J.: Empirical wavelet transform. IEEE Trans. Signal Process. 61(16), 3999–4010 (2013)

    Article  MathSciNet  Google Scholar 

  17. Luo, Z., Liu, T., Yan, S., Qian, M.: Revised empirical wavelet transform based on auto-regressive power spectrum and its application to the mode decomposition of deployable structure. J. Sound Vib. 431, 70–87 (2018)

    Article  Google Scholar 

  18. Xin, Y., Hao, H., Li, J.: Operational modal identification of structures based on improved empirical wavelet transform. Struct. Control Health Monit. 26(3), e2323 (2019)

    Article  Google Scholar 

  19. Amezquita-Sanchez, J.P., Adeli, H.: A new music-empirical wavelet transform methodology for time–frequency analysis of noisy nonlinear and non-stationary signals. Digit. Signal Process. 45, 55–68 (2015)

    Article  Google Scholar 

  20. Singh, P., Joshi, S.D., Patney, R.K., Saha, K.: The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proc. R. Soc. A: Math. Phys. Eng. Sci. 473(2199), 20160871 (2017)

    Article  MathSciNet  Google Scholar 

  21. Alan, R.W.S., Oppenheim, V.,: Discrete Time Signal Processing, 3rd edn. Prentice Hall, Hoboken (2009)

    Google Scholar 

  22. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  23. Gilles, J., Tran, G., Osher, S.: 2D empirical transforms. Wavelets, ridgelets, and curvelets revisited. SIAM J. Imag. Sci. 7(1), 157–186 (2014)

    Google Scholar 

  24. Picinbono, B.: On instantaneous amplitude and phase of signals. IEEE Trans. Signal Process. 45(3), 552–560 (1997)

    Article  Google Scholar 

  25. Harris, F.J.: Multirate Signal Processing for Communication Systems. Prentice Hall PTR, Upper Saddle River, NJ (2004)

    Google Scholar 

  26. Rilling, G., Flandrin, P.: One or two frequencies? The empirical mode decomposition answers. IEEE Trans. Signal Process. 56(1), 85–95 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The author Y.F. Xu is grateful for the financial support from the National Science Foundation through Grant No. CMMI-1762917. The authors gratefully acknowledge valuable discussions with and input from Dr. Gang Yu, Dr. Pushpendra Singh, Dr. Shiqian Chen, and Dr. Heng Li. They also thank people who share their contributions to the signal processing community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, W., Feng, Z., Xu, Y.F., Wang, X., Lv, H. (2022). Empirical Fourier Decomposition for Time-Domain Signal Decomposition. In: Dilworth, B.J., Mains, M. (eds) Topics in Modal Analysis & Testing, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-75996-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75996-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75995-7

  • Online ISBN: 978-3-030-75996-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics