Skip to main content

Tyre Mechanics and Thermal Effects on Tyre Behaviour

  • Chapter
  • First Online:
Vehicle Dynamics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 603))

Abstract

This chapter deals with tyre mechanics and it has a particular focus on thermal effects on its dynamical behaviour. In the first part the typical tyre structure is introduced together with the tyre mechanical/dynamical behaviour according to a classical approach, so recalling the main kinematic and dynamic quantities involved in tyre pure and combined interactions. The core of this chapter is the description of a physical-analytical tyre thermal model able to determine the thermal status in each part of the tyre useful for vehicle dynamics modelling and driving simulations in order to take into account thermal effects on tyre interactions and consequently on vehicle dynamical behaviour. Successively also the tyre wear modelling is faced, after a brief introduction to the different models available in literature some considerations are reported concerning the thermal effects on wear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allouis, C., Farroni, F., Sakhnevych, A., & Timpone, F. (2016). Tire thermal characterization: Test procedure and model parameters evaluation. In Lecture Notes in Engineering and Computer Science (pp. 1199–1204).

    Google Scholar 

  • Archard, J. F. (1953). Contact and rubbing of flat surfaces. Journal of Applied Physics, 24, 981–988. https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  • Archard, J. F., & Hirst, W. (1956). The wear of metals under unlubricated conditions. Proceedings of the Royal Society of London. Series A: Mathematical & Physical Sciences, 236, 397–410. https://doi.org/10.1098/rspa.1956.0144

    Article  Google Scholar 

  • Arricale, V. M., Brancati, R., Carputo, F., et al. (2020). A physical-analytical model for friction hysteretic contribution estimation between tyre tread and road asperities. In Lecture Notes in Mechanical Engineering (pp. 1061–1074). Springer.

    Google Scholar 

  • Batchelor, G. K. (2000). An introduction to fluid dynamics. Cambridge University Press.

    Book  Google Scholar 

  • Braghin, F., Cheli, F., Melzi, S., & Resta, F. (2006). Tyre wear model: Validation and sensitivity analysis. Meccanica, 41, 143–156. https://doi.org/10.1007/s11012-005-1058-9

    Article  MATH  Google Scholar 

  • Calabrese, F., Farroni, F., & Timpone, F. (2013). A flexible ring tyre model for normal interaction. International Review on Modelling and Simulations, 6.

    Google Scholar 

  • Carputo, F., Genovese, A., Maiorano, A., & Rocca, E. (2020). Experimental activity for the analysis of tires tread responses at different conditions with a dynamic dial indicator. In Lecture Notes in Mechanical Engineering (pp. 1045–1060). Springer.

    Google Scholar 

  • Carputo, F., Genovese, A., & Sakhnevych, A. (2021). Application of generalized models for identification of viscoelastic behavior. In Mechanisms and Machine Science (pp. 711–719). Springer.

    Google Scholar 

  • Connelly, J. D., & Huston, R. L. (1994). The dynamics of flexible multibody systems: A finite segment approach—I. Theoretical Aspects. Computers & Structures, 50, 255–258. https://doi.org/10.1016/0045-7949(94)90300-X

    Article  Google Scholar 

  • Dashora, P. (1994). A study of variation of thermal conductivity of elastomers with temperature. Physica Scripta, 49, 611–614. https://doi.org/10.1088/0031-8949/49/5/019

    Article  Google Scholar 

  • De Castro, R., Araújo, R. E., & Freitas, D. (2012). Real-time estimation of tyre-road friction peak with optimal linear parameterisation. IET Control Theory and Applications, 6, 2257–2268. https://doi.org/10.1049/iet-cta.2011.0424

    Article  MathSciNet  Google Scholar 

  • Dorsch, V., Becker, A., & Vossen, L. (2002). Enhanced rubber friction model for finite element simulations of rolling tyres. Plastics, Rubber and Composites, 31, 458–464. https://doi.org/10.1179/146580102225006486

    Article  Google Scholar 

  • Farroni, F., Russo, M., Russo, R., & Timpone, F. (2014). A physical-analytical model for a real-time local grip estimation of tyre rubber in sliding contact with road asperities. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 228, 955–969. https://doi.org/10.1177/0954407014521402

    Article  Google Scholar 

  • Farroni, F., Giordano, D., Russo, M., & Timpone, F. (2014). TRT: Thermo racing tyre a physical model to predict the tyre temperature distribution. Meccanica, 49, 707–723. https://doi.org/10.1007/s11012-013-9821-9

    Article  MathSciNet  MATH  Google Scholar 

  • Farroni, F., Sakhnevych, A., & Timpone, F. (2017). Physical modelling of tire wear for the analysis of the influence of thermal and frictional effects on vehicle performance. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 231, 151–161. https://doi.org/10.1177/1464420716666107

    Article  Google Scholar 

  • Farroni, F., Lamberti, R., Mancinelli, N., & Timpone, F. (2018). TRIP-ID: A tool for a smart and interactive identification of Magic Formula tyre model parameters from experimental data acquired on track or test rig. Mechanical Systems and Signal Processing, 102, 1–22. https://doi.org/10.1016/j.ymssp.2017.07.025

    Article  Google Scholar 

  • Farroni, F., Sakhnevych, A., & Timpone, F. (2019). A three-dimensional multibody tire model for research comfort and handling analysis as a structural framework for a multi-physical integrated system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233, 136–146. https://doi.org/10.1177/0954407018799006

    Article  Google Scholar 

  • Farroni, F., Russo, M., Sakhnevych, A., & Timpone, F. (2019). TRT EVO: Advances in real-time thermodynamic tire modeling for vehicle dynamics simulations. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233, 121–135. https://doi.org/10.1177/0954407018808992

    Article  Google Scholar 

  • Farroni, F., Genovese, A., Maiorano, A., et al. (2021). Development of an innovative instrument for non-destructive viscoelasticity characterization: VESevo. In Mechanisms and machine science (pp. 804–812). Springer.

    Google Scholar 

  • Genna, R. A. (1996) Automatic tire pressure control system for a vehicle.

    Google Scholar 

  • Genovese, A., & Pastore, S. R. (2021). Development of a portable instrument for non-destructive characterization of the polymers viscoelastic properties. Mechanical Systems and Signal Processing, 150, 107259. https://doi.org/10.1016/j.ymssp.2020.107259

    Article  Google Scholar 

  • Genovese, A., Farroni, F., Papangelo, A., & Ciavarella, M. (2019). A discussion on present theories of rubber friction, with particular reference to different possible choices of arbitrary roughness cutoff parameters. Lubricants, 7, 85. https://doi.org/10.3390/lubricants7100085

    Article  Google Scholar 

  • Genovese, A., Carputo, F., Ciavarella, M., et al. (2020a). Analysis of multiscale theories for viscoelastic rubber friction. In Lecture Notes in Mechanical Engineering (pp. 1125–1135). Springer.

    Google Scholar 

  • Genovese, A., Carputo, F., Maiorano, A., et al. (2020b). Study on the generalized formulations with the aim to reproduce the viscoelastic dynamic behavior of polymers. Applied Sciences, 10, 2321. https://doi.org/10.3390/app10072321

    Article  Google Scholar 

  • Genovese, A., D’Angelo, G. A., Sakhnevych, A., & Farroni, F. (2020c). Review on friction and wear test rigs: An overview on the state of the art in tyre tread friction evaluation. Lubricants, 8. https://doi.org/10.3390/LUBRICANTS8090091

  • Guiggiani, M. (2014). The science of vehicle dynamics: Handling, braking, and ride of road and race cars. Springer.

    Book  Google Scholar 

  • Hernández-Olivares, F., Barluenga, G., Parga-Landa, B., et al. (2007). Fatigue behaviour of recycled tyre rubber-filled concrete and its implications in the design of rigid pavements. Construction and Building Materials, 21, 1918–1927. https://doi.org/10.1016/j.conbuildmat.2006.06.030

    Article  Google Scholar 

  • Huang, H., Chiu, Y., Wang, C., & Jin, X. (2015). Three-dimensional global pattern prediction for tyre tread wear. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229, 197–213. https://doi.org/10.1177/0954407014537640

    Article  Google Scholar 

  • Huang, H., Chiu, Y. J., & Jin, X. X. (2013). Numerical calculation of irregular tire wear caused by tread self-excited vibration and sensitivity analysis. Journal of Mechanical Science and Technology, 27, 1923–1931.https://doi.org/10.1007/s12206-013-0505-0

  • Jazar, R. N. (2019). Advanced vehicle dynamics. Springer International Publishing.

    Google Scholar 

  • Kreith, F., Manglik, R. M., & Bohn, M. S. (2011). Principles of heat transfer (7th ed.).

    Google Scholar 

  • Le Maître, O., Süssner, M., & Zarak, C. (1998). Evaluation of tire wear performance. In SAE Technical Papers. SAE International.

    Google Scholar 

  • Li, Y., Zuo, S., Duan, X., et al. (2012). Theory analysis of the steady-state surface temperature on rolling tire. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226, 1278–1289. https://doi.org/10.1177/0954406211422000

    Article  Google Scholar 

  • Li, Y., Zuo, S., Lei, L., et al. (2012). Analysis of impact factors of tire wear. Journal of Vibration and Control, 18, 833–840. https://doi.org/10.1177/1077546311411756

    Article  Google Scholar 

  • Lionetto, F., & Maffezzoli, A. (2009). Polymer characterization by ultrasonic wave propagation. Advances in Polymer Technology, 27, 63–73. https://doi.org/10.1002/adv.20124

    Article  Google Scholar 

  • Lorenz, B., Persson, B. N. J., Fortunato, G., et al. (2013). Rubber friction for tire tread compound on road surfaces. Journal of Physics: Condensed Matter, 25, 95007.

    Google Scholar 

  • Mark, J. E. (2007). Physical properties of polymers handbook. Springer.

    Book  Google Scholar 

  • Mark, J. E., Erman, B., & Roland, M. (2013). The science and technology of rubber (4th ed.) (p. i). Elsevier.

    Google Scholar 

  • Martorelli, M., Speranza, D., Ferraro, P., et al. (2020). Optical characterizations of airless radial tire. In MetroAeroSpace (pp. 1–5). Institute of Electrical and Electronics Engineers (IEEE).

    Google Scholar 

  • Minkowycz, W. J., Sparrow, E. M., Murthy, J. Y., & Abraham, J. P. (2000). Handbook of numerical heat transfer. John Wiley & Sons Inc.

    Book  Google Scholar 

  • Review TT modeling, analysis and control methods for improving vehicle dynamic behavior (Overview).

    Google Scholar 

  • Mohsenimanesh, A., & Ward, S. M. (2010). Estimation of a three-dimensional tyre footprint using dynamic soil-tyre contact pressures. Journal of Terramechanics, 47, 415–421. https://doi.org/10.1016/j.jterra.2010.02.003

    Article  Google Scholar 

  • Nakajima Y, Nakajima Y (2019a) Unidirectional fiber-reinforced rubber. In Advanced Tire Mechanics (pp. 1–58). Springer.

    Google Scholar 

  • Nakajima Y, Nakajima Y (2019b) Traction performance of tires. In Advanced Tire Mechanics (pp. 807–930). Springer.

    Google Scholar 

  • Nakajima Y, Nakajima Y (2019c) Cornering properties of tires. In Advanced Tire Mechanics (pp. 707–806). Springer.

    Google Scholar 

  • Pacejka, H. (2012). Tire and vehicle dynamics. Elsevier Ltd.

    Google Scholar 

  • Patankar, S. V. (1980). Numerical heat transfer and fluid flow.

    Google Scholar 

  • Põdra, P., & Andersson, S. (1999). Simulating sliding wear with finite element method. Tribology International, 32, 71–81. https://doi.org/10.1016/S0301-679X(99)00012-2

    Article  Google Scholar 

  • Rajamani, R. (2012). Vehicle dynamics and control. Springer.

    Book  MATH  Google Scholar 

  • Reye, T. (1860). Zur Theorie der Zapfenreibung. J. Der Civil., 4, 235–255.

    Google Scholar 

  • Sackett, R. A. (1990). Telemetry system for tire pressure and temperature sensing.

    Google Scholar 

  • Saibel, E. A., & Tsai, C. (1973). Tire wear by ablation. Wear, 24, 161–176. https://doi.org/10.1016/0043-1648(73)90229-9

    Article  Google Scholar 

  • Schallamach, A., & Turner, D. M. (1960). The wear of slipping wheels. Wear, 3, 1–25. https://doi.org/10.1016/0043-1648(60)90172-1

    Article  Google Scholar 

  • Shepherd, W. (1986). Diagonal wear predicted by a simple wear model. In The Tire Pavement Interface. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959 (pp. 159–159-21)

    Google Scholar 

  • Shim, T., & Margolis, D. (2005). Dynamic normal force control for vehicle stability enhancement. International Journal of Vehicle Autonomous Systems, 3, 1–14. https://doi.org/10.1504/IJVAS.2005.007034

    Article  Google Scholar 

  • Steyn, W. J. V. D. M., & Haw, M. (2005). The effect of road surfacing condition on tyre life. In 24th Annual Southern African Transport Conference, SATC 2005: Transport Challenges for 2010 (pp. 446–455).

    Google Scholar 

  • Sueoka, A., Ryu, T., Kondou, T., et al. (1997). Polygonal wear of automobile tire. JSME International Journal Series C: Mechanical Systems Machine Elements and Manufacturing, 40, 209–217. https://doi.org/10.1299/jsmec.40.209

    Article  Google Scholar 

  • Trächtler, A. (2004). Integrated vehicle dynamics control using active brake, steering and suspension systems. International Journal of Vehicle Design, 36, 1–12. https://doi.org/10.1504/IJVD.2004.005316

    Article  Google Scholar 

  • Umeno, T. (1998). Observer based estimation of parameter variations and its application to tire pressure diagnosis. IFAC Proceedings Volumes, 31, 23–28. https://doi.org/10.1016/s1474-6670(17)42172-0

    Article  Google Scholar 

  • Xiong, L., Yu, Z., Wang, Y., et al. (2012). Vehicle dynamics control of four in-wheel motor drive electric vehicle using gain scheduling based on tyre cornering stiffness estimation. In Vehicle System Dynamics (pp. 831–846). Taylor & Francis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Timpone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Genovese, A., Timpone, F. (2022). Tyre Mechanics and Thermal Effects on Tyre Behaviour. In: Lenzo, B. (eds) Vehicle Dynamics. CISM International Centre for Mechanical Sciences, vol 603. Springer, Cham. https://doi.org/10.1007/978-3-030-75884-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75884-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75882-0

  • Online ISBN: 978-3-030-75884-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics