Skip to main content

Neural Network Model Identification Studies to Predict Residual Stress of a Steel Plate Based on a Non-destructive Barkhausen Noise Measurement

  • Chapter
  • First Online:
Machine Learning in Industry

Part of the book series: Management and Industrial Engineering ((MINEN))

Abstract

In this study, a systematic comparative study is made between selected ways for identification of a neural network model for the prediction of the residual stress of steel based on the non-destructive Barkhausen noise measurement. The compared approaches are the deterministic forward selection with and without filter and a stochastic genetic algorithm-based approach. All the algorithms make use of the extreme learning machine as a model basis. The main objective is to propose a systematic procedure for identifying a prediction model for the considered system. The results of this study show that the algorithmic approach might be considered necessary not only to reduce the effort for model selection but also to select models with high prediction performance. It was also found that the genetic algorithm proposed earlier by the authors is applicable for selecting a well-generalizing model to the system, but the performance of the deterministic selection techniques is also comparable to the genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.

    Article  MathSciNet  Google Scholar 

  2. Burnham, D. R., & Anderson, K. P. (2002). Model selection and multimodel inference: A practical information-theoretic approach. New York: Springer.

    MATH  Google Scholar 

  3. Chyzhyk, D., Savio, A., & Grana, M. (2014). Evolutionary ELM wrapper feature selection for Alzheimer’s disease CAD on anatomical brain MRI. Neurocomputing, 2014, 73–80.

    Article  Google Scholar 

  4. Davut, K., & Gür, G. (2007). Monitoring the microstructural changes during tempering of quenched SAE 5140 steel by Magnetic Barkhausen noise. Journal of Nondestructive Evaluation, 26, 107–113.

    Article  Google Scholar 

  5. Deniz, A., & Kiziloz, H. (2019). On initial population generation in feature subset selection. Expert Systems with Applications, 137, 11–21.

    Article  Google Scholar 

  6. Foresee, F., & Hagan, M. (1997). Gauss-Newton Approximation to Bayesian learning. Proceedings of International Joint Conference on Neural Networks, pp. 1930–1935.

    Google Scholar 

  7. Ghanei, S., Saheb Alam, A., Kashefi, M., & Mazinani, M. (2014). Nondestructive characterization of microstructure and mechanical properties of intercritically annealed dual-phase steel by magnetic Barkhausen noise technique. Materials Science and Engineering A, 607, 253–260.

    Article  Google Scholar 

  8. Ghanei, S., Vafaeenezhad, H., Kashefi, M., Eivani, A. R., & Mazinani, M. (2015). Design of an expert system based on neuro-fuzzy inference analyzer for on-line microstructural characterization using magnetic NDT. Journal of Magnetism and Magnetic Materials, 379, 131–136.

    Article  Google Scholar 

  9. Guyon, I., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection. Journal of Machine Learning Research, 3, 1157–1182.

    MATH  Google Scholar 

  10. Guyon, I., & Elisseeff, A. (2006). An introduction to feature extraction. In Feature extraction (pp. 1–25). Springer, Berlin, Heidelberg.

    Google Scholar 

  11. Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis. Springer.

    Google Scholar 

  12. Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2017), Springer Series in Statistics.

    Google Scholar 

  13. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.

    Article  Google Scholar 

  14. Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1–2), 273–324.

    Article  Google Scholar 

  15. Kypris, O., Nlebedin, I. C., & Jiles, D. C. (2014). A model for the Barkhausen frequency spectrum as a function of applied stress. Journal of Applied Physics, 115, 083906.

    Google Scholar 

  16. Mallows, C. L. (2000). Some comments on Cp. Technometrics, 42(1), 87–94.

    Google Scholar 

  17. Moorthy, V., Shaw, B., Mountford, P., & Hopkins, P. (2005). Magnetic Barkhausen emission technique for evaluation of residual stress alteration by grinding in case-carburised En36 steel. Acta Materialia, 53, 4997–5006.

    Article  Google Scholar 

  18. Mäkinen, R., Periaux, J., & Toivanen, J. (1999). Multidisclipnary shape optimization in aerodynamics and electromagnetics using genetic algorithms. International Journal for Numerical Methods in Fluids, 30, 149–159.

    Article  Google Scholar 

  19. Nowak, R. D. (1997). Optimal signal estimation using cross-validation. IEEE Signal Processing Letters, 4(1), 23–25.

    Article  Google Scholar 

  20. Ripon, K. S. N., Kwong, S., & Man, K. F. (2007). A real-coding jumping gene genetic algorithm (RJGGA) for multiobjective optimization. Information Sciences, 177, 632–654.

    Article  Google Scholar 

  21. Santa-Aho, S., Vippola, M., Saarinen, T., Isakov, M., Sorsa, A., Lindgren, M., et al. (2012). Barkhausen noise characterisation during elastic bending and tensile-compression loading of case-hardened and tempered samples, 47, 6420–6428.

    Google Scholar 

  22. Schwenk, H., & Bengio, Y. (2000). Boosting neural networks. Neural Computation, 12(8), 1869–1887.

    Article  Google Scholar 

  23. Sorsa, A., Leiviskä, K., Santa-aho, S., & Lepistö, T. (2012). Quantitative prediction of residual stress and hardness in case-hardened steel based on the Barkhausen noise measurement. NDT and E International, 46, 100–106.

    Article  Google Scholar 

  24. Sorsa, A., Leiviskä, K., Santa-aho, S., Vippola, M., & Lepistö, T. (2013). An efficient procedure for identifying the prediction model between residual stress and Barkhausen noise. Journal of Nondestructive Evaluation, 32(4), 341–349.

    Article  Google Scholar 

  25. Sorsa, A., Isokangas, A., Santa-aho, S., Vippola, M., Lepistö, T., & Leiviskä, K. (2014). Prediction of residual stresses using partial least squares regression on Barkhausen noise signals. Journal of Nondestructive Evaluation, 33(1), 43–50.

    Google Scholar 

  26. Tomkowski, R., Sorsa, A., Santa-Aho, S., Lundin, P. & Vippola, M. (2019). Statistical evaluation of barkhausen noise testing (BNT) for ground samples, Sensors 19, Article number 4717.

    Google Scholar 

  27. Vuolio, T., Visuri, V.-V., Sorsa, A., Ollila, S., & Fabritius, T. (2020). Application of a genetic algorithm based model selection algorithm for identification of carbide-based hot metal desulfurization. Applied Soft Computing Journal, 92, Article number 106330.

    Google Scholar 

  28. Wang, P., Zhu, L., Zhu, Q., Ji, X., Wanga, H., Tian, G., et al. (2013). An application of backpropagation neural network for the steel stress detection based on Barkhausen noise theory. NDT and E International, 55, 9–14.

    Article  Google Scholar 

  29. Sorsa, A., Santa-aho, S., Aylott, C., Shaw, B. A., Vippola, M., & Leiviskä, K. (2019). Case Depth Prediction of Nitrided Samples with Barkhausen Noise Measurement. Metals, 9(3), 325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tero Vuolio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vuolio, T., Pesonen, O., Sorsa, A., Santa-aho, S. (2022). Neural Network Model Identification Studies to Predict Residual Stress of a Steel Plate Based on a Non-destructive Barkhausen Noise Measurement. In: Datta, S., Davim, J.P. (eds) Machine Learning in Industry. Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-75847-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75847-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75846-2

  • Online ISBN: 978-3-030-75847-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics