Skip to main content

Complex Dynamics and Hidden Attractors in Delayed Impulsive Systems

  • Chapter
  • First Online:
Chaotic Systems with Multistability and Hidden Attractors

Abstract

Differential equations with impulses (jumps) constitute a wide class of functional differential equations and play a significant role in various fields of science and technology (see, e.g. [1,2,3]). First papers on impulsive equations with delay date back to the 1980s [4, 5]. Later, the theory of delay impulsive equations was developed in depth in a number of publications, see e.g. Refs. [6,7,8,9,10,11,12,13,14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Lakshmikantham, D. Bainov, P. Simeonov, Theory of Impulsive Differential Equations (World Scientific, Singapore, 1989)

    Google Scholar 

  2. D. Bainov, P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Harlow (Longman, Harlow, 1993)

    Google Scholar 

  3. A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations (World Scientific, Singapore, 1995)

    Google Scholar 

  4. A.V. Anokhin, Linear impulsive systems for functional-differential equations. Dokl. Akad. Nauk SSSR 286(5), 1037–1040 (1986)

    MathSciNet  Google Scholar 

  5. K. Gopalsamy, B.G. Zhang, On delay differential equations with impulses. J. Math. Anal. Appl. 139, 110–122 (1989)

    Article  MathSciNet  Google Scholar 

  6. D. Bainov, B. Covachev, I. Stamova, Estimates of the solutions of impulsive quasilinear functional differential equations. Ann. Fac. Sci. Toulouse Math. Ser. 5 12(2), 149–161 (1991)

    Google Scholar 

  7. D.D. Bainov, I. Stamova, Lipschitz stability of linear impulsive differential-difference equations. Note Matemat. 15(2), 137–142 (1995)

    MathSciNet  MATH  Google Scholar 

  8. A. Domoshnitsky, M. Drakhlin, Nonoscillation of first order impulse differential equations with delay. J. Math. Anal. Appl. 206, 254–269 (1997)

    Article  MathSciNet  Google Scholar 

  9. L. Berezansky, E. Braverman, On oscillation of a second order impulsive linear delay differential equation. J. Math. Anal. Appl. 233(2), 276–300 (1999)

    Article  MathSciNet  Google Scholar 

  10. G.H. Ballinger, Qualitative theory of impulsive delay differential equations. Ph.D. dissertation, University of Waterloo, Waterloo, ON, Canada (1999)

    Google Scholar 

  11. G. Ballinger, X. Liu, Existence, uniqueness and boundedness results for impulsive delay differential equations. Appl. Anal. 74(1–2), 71–93 (2000)

    Article  MathSciNet  Google Scholar 

  12. X. Liu, X. Shen, Y. Zhang, Q. Wang, Stability criteria for impulsive systems with time delay and unstable system matrices. IEEE Trans. Circuits Syst. I: Reg. Papers 54(10), 2288–2298 (2007)

    Article  MathSciNet  Google Scholar 

  13. I. Stamova, Stability Analysis of Impulsive Functional Differential Equations (Walter de Gruyter, Berlin, 2009)

    Google Scholar 

  14. R.P. Agarval, F. Karakoç, A survey on oscillation of impulsive delay differential equations. Comput. Math. Appl. 60, 1648–1685 (2010)

    Google Scholar 

  15. G.T. Stamov, Almost Periodic Solutions of Impulsive Differential Equations (Springer, Berlin, 2012)

    Google Scholar 

  16. I. Stamova, G. Stamov, Applied Impulsive Mathematical Models (Springer, Berlin, 2016)

    Google Scholar 

  17. A.N. Churilov, A. Medvedev, A.I. Shepeljavyi, Mathematical model of non-basal testosterone regulation in the male by pulse modulated feedback. Automatica 45(1), 78–85 (2009)

    Article  MathSciNet  Google Scholar 

  18. W. Smith, Hypothalamic regulation of pituitary secretion of lutheinizing hormone: II Feedback control of gonadotropin secretion. Bull. Math. Biol. 42, 57–78 (1980)

    MATH  Google Scholar 

  19. W. Smith, Qualitative mathematical models of endocrine systems. Am. J. Physiol. 245(4), R473–R477 (1983)

    Google Scholar 

  20. B.C. Goodwin, Oscillatory behavior in enzymatic control processes, in Advances in Enzyme Regulation, vol. 3, ed. by G. Weber (Pergamon, Oxford, 1995), pp. 425–438

    Google Scholar 

  21. J. Walker, J. Terry, K. Tsaneva-Atanasova, S. Armstrong, C. McArdle, S. Lightman, Encoding and decoding mechanisms of pulsatile hormone secretion. J. Neuroendocrinol. 22, 1226–1238 (2009)

    Article  Google Scholar 

  22. P. Mattsson, A. Medvedev, Modeling of testosterone regulation by pulse-modulated feedback. Adv. Exp. Med. Biol. 823, 23–40 (2015)

    Article  Google Scholar 

  23. Z.T. Zhusubaliyev, A.N. Churilov, A. Medvedev, Bifurcation phenomena in an impulsive model of non-basal testosterone regulation. Chaos 22(1), 013121 (2012)

    Google Scholar 

  24. M. Cartwright, M. Husain, A model for the control of testosterone secretion. J. Theor. Biol. 123, 239–250 (1986)

    Article  Google Scholar 

  25. P. Das, A.B. Roy, A. Das, Stability and oscillations of a negative feedback delay model for the control of testosterone secretion. BioSystems 32(1), 61–69 (1994)

    Article  Google Scholar 

  26. S. Ruan, J. Wei, On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion. IMA J. Math. Appl. Medic. Biol. 18(1), 41–52 (2001)

    Article  Google Scholar 

  27. B. Mukhopadhyay, R. Bhattacharyya, A delayed mathematical model for testosterone secretion with feedback control mechanism. Int. J. Math. Math. Sciences 2004(3), 105–115 (2004)

    Article  MathSciNet  Google Scholar 

  28. H. Ren, Stability analysis of a simplified model for the control of testosterone secretion. Discrete Contin. Dynam. Syst., Ser. B 4(3), 729–738 (2004)

    Google Scholar 

  29. G. Enciso, E. Sontag, On the stability of a model of testosterone dynamics. J. Math. Biol. 49, 627–634 (2004)

    Article  MathSciNet  Google Scholar 

  30. D.V. Efimov, A.L. Fradkov, Oscillatority conditions for nonlinear systems with delay. J. Appl. Math. 2007, 72561 (2007)

    Google Scholar 

  31. A.N. Churilov, A. Medvedev, P. Mattsson, Periodical solutions in a time-delay model of endocrine regulation by pulse-modulated feedback. Proceedings of the 51st IEEE Conference on Decision and Control (IEEE, New York, 2012), pp. 362–367

    Google Scholar 

  32. A.N. Churilov, A. Medvedev, P. Mattsson, Finite-dimensional reducibility of time-delay systems under pulse-modulated feedback. Proceedings of the 52nd IEEE Conference on Decision and Control (IEEE, New York, 2013), pp. 2078–2083

    Google Scholar 

  33. A.N. Churilov, A. Medvedev, P. Mattsson, Periodical solutions in a pulse-modulated model of endocrine regulation with time-delay. IEEE Trans. Automat. Control 59(3), 728–733 (2014)

    Article  MathSciNet  Google Scholar 

  34. W. Haddad, V. Chellaboina, S. Nersesov, Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control (Princeton University Press, Princeton, 2006)

    Google Scholar 

  35. T. Parker, L. Chua, Practical Numerical Algorithms for Chaotic Systems (Springer, New York, 1989)

    Google Scholar 

  36. A.N. Churilov, A. Medvedev, An impulse-to-impulse discrete-time mapping for a time-delay impulsive system. Automatica 50(8), 2187–2190 (2014)

    Article  MathSciNet  Google Scholar 

  37. Z.T. Zhusubaliyev, A.N. Churilov, A. Medvedev, Time delay induced multistability and complex dynamics in an impulsive model of endocrine regulation. Proceedings of the 13th European Control Conference (ECC) (IEEE, New York, 2014), pp. 2304–2309

    Google Scholar 

  38. A.N. Churilov, A. Medvedev, Z.T. Zhusubaliyev, Periodic modes and bistability in an impulsive Goodwin oscillator with large delay. Proceedings of the 19th World IFAC Congress (2014), pp. 3340–3345

    Google Scholar 

  39. Z.T. Zhusubaliyev, E. Mosekilde, A.N. Churilov, A. Medvedev, Multistability and hidden attractors in an impulsive Goodwin oscillator with time delay. Eur. Phys. J. Special Topics 224, 1519–1539 (2015)

    Google Scholar 

  40. G.A. Leonov, N.V. Kuznetsov, V.I. Vagaitsev, Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)

    Article  MathSciNet  Google Scholar 

  41. G.A. Leonov, N.V. Kuznetsov, V.I. Vagaitsev, Hidden attractor in smooth Chua systems. Physica D 241, 1482–1486 (2012)

    Article  MathSciNet  Google Scholar 

  42. G.A. Leonov, N.V. Kuznetsov, Hidden attractors in dynamical systems: From hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifur. Chaos 23, 1330002 (2013)

    Google Scholar 

  43. D. Dudkowski, S. Jafari, T. Kapitaniak, N.V. Kuznetsov, G.A. Leonov, A. Prasad, Hidden attractors in dynamical systems. Phys. Rep. 637(3), 1–50 (2016)

    Article  MathSciNet  Google Scholar 

  44. N.V. Kuznetsov, “Hidden Attractors in Fundamental Problems and Engineering Models: A Short Survey, in AETA 2015: Recent Advances in Electrical Engineering and Related Sciences, Lecture Notes in Electrical Engineering, vol. 371 (Springer, Cham, 2016), pp. 13–22

    Google Scholar 

  45. Z.T. Zhusubaliyev, E. Mosekilde, Multistability and hidden attractors in a multilevel DC/DC converter. Math. Comput. Simulation 109, 32–45 (2015)

    Google Scholar 

  46. Z.T. Zhusubaliyev, E. Mosekilde, V. Rubanov, R. Nabokov, Multistability and hidden attractors in a relay system with hysteresis. Physica D 306, 6–15 (2015)

    Google Scholar 

  47. H. Ahmed, R. Ushirobira, D. Efimov, On robustness of phase resetting to cell division under entrainment. J. Theor. Biol. 387, 206213 (2015)

    Google Scholar 

  48. A.N. Churilov, A. Medvedev, Z.T. Zhusubaliyev, Impulsive Goodwin oscillator with large delay: periodic oscillations, bistability, and attractors. Nonlin. Anal. Hybrid Syst. 21, 171–183 (2016)

    Google Scholar 

  49. J. Murray, Mathematical Biology. I: An Introduction, 3rd edn. (Springer, New York, 2002)

    Google Scholar 

  50. G.A. Leonov, N.V. Kuznetsov, T.N. Mokaev, Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion - Homoclinic orbits, and self-excited and hidden attractors. Eur. Phys. J. Special Topics 224, 1421–1458 (2015)

    Article  Google Scholar 

  51. S. Rasband, Chaotic Dynamics of Nonlinear Systems (Wiley, New York, 1990)

    Google Scholar 

  52. A. Agliari, Homoclinic connections and subcritical Neimark bifurcations in a duopoly model with adaptively adjusted productions. Chaos Soliton. Fract. 29, 739–755 (2006)

    Google Scholar 

Download references

Acknowledgements

A. N. Churilov was partly supported by the Government of Russian Federation, Grant 08-08. A. Medvedev was in part financed by Grant 2015-05256 from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Churilov, A.N., Medvedev, A., Zhusubaliyev, Z.T. (2021). Complex Dynamics and Hidden Attractors in Delayed Impulsive Systems. In: Wang, X., Kuznetsov, N.V., Chen, G. (eds) Chaotic Systems with Multistability and Hidden Attractors. Emergence, Complexity and Computation, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-030-75821-9_17

Download citation

Publish with us

Policies and ethics