Skip to main content

Olivocerebellar Somatotopy Revisited

  • Conference paper
  • First Online:
Cerebellum as a CNS Hub

Abstract

Knowing how the different body parts are topographically mapped to the cerebellum is crucial in order to understand the operation of the cerebellar system. Similarly to the somatotopic representation in neocortical sensorimotor areas, the cerebellar afferent somatotopy has been discussed on from quite a while before. Recent results obtained in large-scale optical imaging of complex spikes uncovered that sensory information is represented by a large population of complex spikes over cerebellar cortex, leading to a change in our understanding about the operational principle of cerebellar circuits from localized representation to distributed and overlapped representation of sensory signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adrian, E. D. (1943). Afferent areas in the cerebellum connected with the limbs. Brain, 66, 289–315.

    Article  Google Scholar 

  • Allen, G. I., Azzena, G. B., & Ohno, T. (1974). Somatotopically organized inputs from fore- and hindlimb areas of sensorimotor cortex to cerebellar Purkyne cells. Experimental Brain Research, 20, 255–272.

    CAS  PubMed  Google Scholar 

  • Anderson, R. F. (1943). Cerebellar distribution of the dorsal and ventral spino-cerebellar tracts. The Journal of Comparative Neurology, 79, 415–423.

    Article  Google Scholar 

  • Armstrong, D. M., & Harvey, R. J. (1968). Responses to a spino-olivo-cerebellar pathway in the cat. The Journal of Physiology, 194, 147–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong, D. M., Harvey, R. J., & Schild, R. F. (1974). Topographical localization in the olivo-cerebellar projection: An electrophysiological study in the cat. The Journal of Comparative Neurology, 154, 287–302.

    Article  CAS  PubMed  Google Scholar 

  • Beck, G. M. (1927). The cerebellar terminations of the spinocerebellar fibers of the lower limbar and sacral segments of the cat. Brain, 50, 60–98.

    Article  Google Scholar 

  • Berkowitz, A. (2018). You can observe a lot by watching: Hughlings Jackson’s underappreciated and prescient ideas about brain control of movement. The Neuroscientist, 24, 448–455.

    Article  PubMed  Google Scholar 

  • Bloedel, J. R. (1973). Cerebellar afferent systems: A review. Progress in Neurobiology, 2, 3–68.

    Article  CAS  PubMed  Google Scholar 

  • Brodal, A., & Kawamura, K. (1980). Olivocerebellar projection: A review. Advances in Anatomy, Embryology and Cell Biology, 64(IVIII), 1–140.

    Google Scholar 

  • Brodal, A., Walberg, F., & Blackstad, T. (1950). Termination of spinal afferents to inferior olive in cat. Journal of Neurophysiology, 13, 431–454.

    Article  CAS  PubMed  Google Scholar 

  • Carrea, R. M., & Grundfest, H. (1954). Electrophysiological studies of cerebellar inflow. I. Origin, conduction and termination of ventral spino-cerebellar tract in monkey and cat. Journal of Neurophysiology, 17, 208–238.

    Article  CAS  PubMed  Google Scholar 

  • Combs, C. M. (1954). Electro-anatomical study of cerebellar localization; stimulation of various afferents. Journal of Neurophysiology, 17, 123–143.

    Article  CAS  PubMed  Google Scholar 

  • Dow, R. S. (1942). Cerebellar action potentials in response to stimulation of the cerebral cortex in monkeys and cats. Journal of Neurophysiology, 5, 122–136.

    Google Scholar 

  • Dow, R. S., & Anderson, R. (1942). Cerebellar action potentials in response to stimulation of proprioceptors and exteroceptors in the rat. Journal of Neurophysiology, 5, 363–371.

    Article  Google Scholar 

  • Dow, R. S., & Moruzzi, G. (1958). The physiology and pathology of the cerebellum. The University of Minnesota Press.

    Google Scholar 

  • Eccles, J. C. (1970). The topography of the mossy and climbing fiber inputs to the anterior lobe of the cerebellum. In W. S. Fields & J. W. D. Willis (Eds.), The cerrebellum in health and disease (pp. 231–266). St. Louis, Missouri.

    Google Scholar 

  • Eccles, J. C. (1977). My scientific odyssey. Annual Review of Physiology, 39, 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Eccles, J. C., Ito, M., & Szentágothai, J. (1967). The cerebellum as a neuronal machine. Springer.

    Book  Google Scholar 

  • Eccles, J. C., Provini, L., Strata, P., & Taborikova, H. (1968a). Analysis of electrical potentials evoked in the cerebellar anterior lobe by stimulation of hindlimb and forelimb nerves. Experimental Brain Research, 6, 171–194.

    Article  CAS  PubMed  Google Scholar 

  • Eccles, J. C., Provini, L., Strata, P., & Taborikova, H. (1968b). Topographical investigations on the climbing fiber inputs from forelimb and hindlimb afferents to the cerebellar anterior lobe. Experimental Brain Research, 6, 195–215.

    Article  CAS  PubMed  Google Scholar 

  • Eccles, J. C., Sabah, N. H., Schmidt, R. F., & Taborikova, H. (1972). Integration by Purkyne cells of mossy and climbing fiber inputs from cutaneous mechanoreceptors. Experimental Brain Research, 15, 498–520.

    Article  CAS  PubMed  Google Scholar 

  • Ekerot, C. F., & Larson, B. (1979a). The dorsal spino-olivocerebellar system in the cat. I. Functional organization and termination in the anterior lobe. Experimental Brain Research, 36, 201–217.

    Article  CAS  PubMed  Google Scholar 

  • Ekerot, C. F., & Larson, B. (1979b). The dorsal spino-olivocerebellar system in the cat. II. Somatotopical organization. Experimental Brain Research, 36, 219–232.

    Article  CAS  PubMed  Google Scholar 

  • Flourens, P. (1960). Investigations of the properties and the functions of the various parts which compose the cerebral mass. In G. von Bonin (Ed.), Some papers on the cerebral cortex. Charles C Thomas.

    Google Scholar 

  • Gandhoke, G. S., Belykh, E., Zhao, X., Leblanc, R., & Preul, M. C. (2019). Edwin Boldrey and Wilder Penfield’s homunculus: A life given by Mrs. Cantlie (in and out of realism). World Neurosurgery, 132, 377–388.

    Article  PubMed  Google Scholar 

  • Glickstein, M. (2014). Neuroscience: A historical introduction. The MIT Press.

    Book  Google Scholar 

  • Grant, G. (1962). Spinal course and somatotopically localized termination of the spinocerebellar tracts. An experimental study in the cat. Acta Physiologica Scandinavica. Supplementum, 56, 1–61.

    CAS  PubMed  Google Scholar 

  • Graziano, M. S., Taylor, C. S., & Moore, T. (2002). Complex movements evoked by microstimulation of precentral cortex. Neuron, 34, 841–851.

    Article  CAS  PubMed  Google Scholar 

  • Graziano, M. S. A. (2016). Ethological action maps: A paradigm shift for the motor cortex. Trends in Cognitive Sciences, 20, 121–132.

    Article  PubMed  Google Scholar 

  • Guell, X., Gabrieli, J. D. E., & Schmahmann, J. D. (2018). Triple representation of language, working memory, social and emotion processing in the cerebellum: Convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. NeuroImage, 172, 437–449.

    Article  PubMed  Google Scholar 

  • Hiss, E., Leicht, R., & Schmidt, R. F. (1977). Cutaneous receptive fields of cerebellar Purkyne cells of unanesthetized cats. Experimental Brain Research, 27, 319–333.

    CAS  PubMed  Google Scholar 

  • Horikawa, K., Yamada, Y., Matsuda, T., Kobayashi, K., Hashimoto, M., Matsu-ura, T., Miyawaki, A., Michikawa, T., Mikoshiba, K., & Nagai, T. (2010). Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nature Methods, 7, 729–732.

    Article  CAS  PubMed  Google Scholar 

  • Horrax, G. (1915). A study of the afferent fibers of the body wall and of the hind legs to the cerebellum of the dog by the method of degeneration. The Anatomical Record, 9, 307–321.

    Article  Google Scholar 

  • Iorio-Morin, C., & Mathieu, D. (2020). Perspective on the homunculus, the history of cerebral localization, and evolving modes of data representation. World Neurosurgery, 135, 42–47.

    Article  PubMed  Google Scholar 

  • Ishikawa, K., Kawaguchi, S., & Rowe, M. J. (1972). Actions of afferent impulses from muscle receptors on cerebellar Purkyne cells. I. Responses to muscle vibration. Experimental Brain Research, 15, 177–193.

    Article  CAS  PubMed  Google Scholar 

  • Kanwisher, N. (2010). Functional specificity in the human brain: A window into the functional architecture of the mind. Proceedings of the National Academy of Sciences of the United States of America, 107, 11163–11170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kooy, F. H. (1917). The inferior olive in vertebrates. Folia Neurobiol, 10, 205–369.

    Google Scholar 

  • Kuroki, S., Yoshida, T., Tsutsui, H., Iwama, M., Ando, R., Michikawa, T., Miyawaki, A., Ohshima, T., & Itohara, S. (2018). Excitatory neuronal hubs configure multisensory integration of slow waves in association cortex. Cell Reports, 22, 2873–2885.

    Article  CAS  PubMed  Google Scholar 

  • Larson, B., Miller, S., & Oscarsson, O. (1969a). A spinocerebellar climbing fibre path activated by the flexor reflex afferents from all four limbs. The Journal of Physiology, 203, 641–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson, B., Miller, S., & Oscarsson, O. (1969b). Termination and functional organization of the dorsolateral spino-olivocerebellar path. The Journal of Physiology, 203, 611–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leicht, R., Rowe, M. J., & Schmidt, R. F. (1973). Cutaneous convergence on to the climbing fibre input to cerebellar Purkyne cells. The Journal of Physiology, 228, 601–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leicht, R., & Schmidt, R. F. (1977). Somatotopic studies on the vermal cortex of the cerebellar anterior lobe of unanaesthetized cats. Experimental Brain Research, 27, 479–490.

    Article  CAS  PubMed  Google Scholar 

  • Llinás, R., & Simpson, J. I. (1981). Cerebellar control of movement. In A. L. Towe & E. S. Luschei (Eds.), Handbook of behavioral neurobiology, 5 motor coordination (pp. 231–302). New York.

    Google Scholar 

  • Manni, E., & Petrosini, L. (2004). A century of cerebellar somatotopy: A debated representation. Nature Reviews. Neuroscience, 5, 241–249.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, W. H., Woolsey, C. N., & Bard, P. (1937). Cortical representation of tactile sensibility as indicated by cortical potentials. Science, 85, 388–390.

    Article  CAS  PubMed  Google Scholar 

  • Michikawa, T., Yoshida, T., Kuroki, S., Ishikawa, T., Kakei, S., Itohara, S., & Miyawaki, A. (2020). Distributed sensory coding by cerebellar complex spikes in units of cortical segments. bioRxiv. Doi. https://doi.org/10.1101/2020.09.18.301564

  • Miles, T. S., & Wiesendanger, M. (1975). Organization of climbing fibre projections to the cerebellar cortex from trigeminal cutaneous afferents and from the SI face area of the cerebral cortex in the cat. The Journal of Physiology, 245, 409–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., & Tsien, R. Y. (1997). Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature, 388, 882–887.

    Article  CAS  PubMed  Google Scholar 

  • Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M., & Miyawaki, A. (2004). Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, 101, 10554–10559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oscarsson, O. (1965). Functional Organization of the Spino- and Cuneocerebellar Tracts. Physiological Reviews, 45, 495–522.

    Article  CAS  PubMed  Google Scholar 

  • Oscarsson, O. (1968). Termination and functional organization of the ventral spino-olivocerebellar path. The Journal of Physiology, 196, 453–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oscarsson, O. (1969). Termination and functional organization of the dorsal spino-olivocerebellar path. The Journal of Physiology, 200, 129–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oscarsson, O. (1980). Functional organization of olivary projection to the cerebellar anterior lobe. In J. Courville & Y. Lamarre (Eds.), The inferior olivary nucleus, anatomy and physiology, C.d.M (pp. 279–289). Raven Press.

    Google Scholar 

  • Oscarsson, O., & Sjolund, B. (1977). The ventral spino-olivocerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe. Experimental Brain Research, 28, 469–486.

    CAS  PubMed  Google Scholar 

  • Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60, 389–443.

    Article  Google Scholar 

  • Penfield, W., & Rasmussen, T. (1950). The cerebral cortex of man. Macmillan.

    Google Scholar 

  • Provini, L., Redman, S., & Strata, P. (1967). Somatotopic organization of mossy and climbing fibres to the anterior lobe of cerebellum activated by the sensorimotor cortex. Brain Research, 6, 378–381.

    Article  CAS  PubMed  Google Scholar 

  • Provini, L., Redman, S., & Strata, P. (1968). Mossy and climbing fibre organization on the anterior lobe of the cerebellum activated by forelimb and hindlimb areas of the sensorimotor cortex. Experimental Brain Research, 6, 216–233.

    Article  CAS  PubMed  Google Scholar 

  • Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S., Mooney, R. D., Platt, M. L., & White, L. E. (2018). Neuroscience (6th ed.). Sinauer Associates.

    Google Scholar 

  • Purves, D., Brannon, E. M., Cabeza, R., Huettel, S. A., & LaBar, K. S. (2007). Principles of cognitive neuroscience. Sinauer Associates.

    Google Scholar 

  • Robertson, L. T., & Laxer, K. D. (1981). Localization of cutaneously elicited climbing fiber responses in lobule V of the monkey cerebellum. Brain, Behavior and Evolution, 18, 157–168.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, L. T., Laxer, K. D., & Rushmer, D. S. (1982). Organization of climbing fiber input from mechanoreceptors to lobule V vermal cortex of the cat. Experimental Brain Research, 46, 281–291.

    Article  CAS  PubMed  Google Scholar 

  • Rubia, F. J., & Tandler, R. (1981). Spatial distribution of afferent information to the anterior lobe of the cat’s cerebellum. Experimental Brain Research, 42, 249–259.

    CAS  PubMed  Google Scholar 

  • Rushmer, D. S., Woollacott, M. H., Robertson, L. T., & Laxer, K. D. (1980). Somatotopic organization of climbing fiber projections from low threshold cutaneous afferents to pars intermedia of cerebellar cortex in the cat. Brain Research, 181, 17–30.

    Article  CAS  PubMed  Google Scholar 

  • Saladin, K. D. (2021). Anatomy & physiology: The unity of form and function (9th ed.). McGraw-Hill Education.

    Google Scholar 

  • Schieber, M. H., & Hibbard, L. S. (1993). How somatotopic is the motor cortex hand area? Science, 261, 489–492.

    Article  CAS  PubMed  Google Scholar 

  • Sherrington, C. S. (1920). The integrative action of the nervous system. Yale University Press.

    Google Scholar 

  • Smith, C. U. M. (2008). Biology of sensory systems (2nd ed.). Wiley.

    Google Scholar 

  • Snider, R. S. (1950). Recent contributions to the anatomy and physiology of the cerebellum. Archives of Neurology and Psychiatry, 64, 196–219.

    Article  CAS  PubMed  Google Scholar 

  • Snider, R. S. (1958). The cerebellum. Scientific American, 199, 84–90.

    Article  CAS  PubMed  Google Scholar 

  • Snider, R. S., & Eldred, E. (1952). Cerebrocerebellar relationships in the monkey. Journal of Neurophysiology, 15, 27–40.

    Article  CAS  PubMed  Google Scholar 

  • Snider, R. S., & Stowell, A. (1944). Receiving areas of the tactile, auditory and visual systems in the cerebellum. Journal of Neurophysiology, 7, 331–358.

    Article  Google Scholar 

  • Thach, W. T., Jr. (1967). Somatosensory receptive fields of single units in cat cerebellar cortex. Journal of Neurophysiology, 30, 675–696.

    Article  PubMed  Google Scholar 

  • VanGilder, J. C., & O’Leary, J. L. (1970). Topical projection of the olivocerebellar system in the cat: An electrophysiological study. The Journal of Comparative Neurology, 140, 69–80.

    Article  CAS  PubMed  Google Scholar 

  • Voogd, J. (2011). Cerebellar zones: A personal history. Cerebellum, 10, 334–350.

    Article  PubMed  Google Scholar 

  • Voogd, J., Shinoda, Y., Ruigrok, T. J., & Sugihara, I. (2013). Cerebellar nuclei and the inferior olivary nuclei: Organization and connections. In M. Manto, D. L. Gruol, J. D. Schmahmann, N. Koibuchi, & F. Rossi (Eds.), Handbook of the cerebellum and cerebellar disorders (pp. 377–436). Springer.

    Chapter  Google Scholar 

  • Willett, F. R., Deo, D. R., Avansino, D. T., Rezaii, P., Hochberg, L. R., Henderson, J. M., & Shenoy, K. V. (2020). Hand knob area of premotor cortex represents the whole body in a compositional way. Cell, 181, 396–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolsey, C. N., & Erickson, T. C. (1950). Study of the postcentral gyrus of man by the evoked potential technique. Transactions of the American Neurological Association, 51, 50–52.

    CAS  PubMed  Google Scholar 

  • Woolsey, C. N., Marshall, W. H., & Bard, P. (1942). Representation of cutaneous tactile sensibility in cerebral cortex of monkey as indicated by evoked potentials. Bulletin of the Johns Hopkins Hospital, 70, 399–441.

    Google Scholar 

  • Woolsey, C. N., Settlage, P. H., Meyer, D. R., Sencer, W., Pinto Hamuy, T., & Travis, A. M. (1952). Patterns of localization in precentral and “supplementary” motor areas and their relation to the concept of a premotor area. Research Publications – Association for Research in Nervous and Mental Disease, 30, 238–264.

    CAS  PubMed  Google Scholar 

  • Yamada, Y., Michikawa, T., Hashimoto, M., Horikawa, K., Nagai, T., Miyawaki, A., Häusser, M., & Mikoshiba, K. (2011). Quantitative comparison of genetically encoded Ca indicators in cortical pyramidal cells and cerebellar Purkinje cells. Frontiers in Cellular Neuroscience, 5, 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Japan Ministry of Education, Culture, Sports, Science, and Technology Grant-in-Aid for Scientific Research on Innovative Areas: Resonance Bio (15H05948).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Michikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Michikawa, T., Miyawaki, A. (2021). Olivocerebellar Somatotopy Revisited. In: Mizusawa, H., Kakei, S. (eds) Cerebellum as a CNS Hub. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-75817-2_6

Download citation

Publish with us

Policies and ethics