Skip to main content

Tractable Combinations of Theories via Sampling

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12678))

Included in the following conference series:

  • 542 Accesses

Abstract

For a first-order theory T, the Constraint Satisfaction Problem of T is the computational problem of deciding whether a given conjunction of atomic formulas is satisfiable in some model of T. In this article we develop sufficient conditions for polynomial-time tractability of the constraint satisfaction problem for the union of two theories with disjoint relational signatures. To this end, we introduce the concept of sampling for theories and show that samplings can be applied to examples which are not covered by the seminal result of Nelson and Oppen.

Both authors have received funding from the European Research Council (ERC Grant Agreement no. 681988, CSP-Infinity), and the DFG Graduiertenkolleg 1763 (QuantLA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baader, F., Schulz, K.U.: Combining constraint solving. In: Goos, G., Hartmanis, J., van Leeuwen, J., Comon, H., Marché, C., Treinen, R. (eds.) CCL 1999. LNCS, vol. 2002, pp. 104–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45406-3_3

    Chapter  Google Scholar 

  2. Bezem, M., Nieuwenhuis, R., Rodríguez-Carbonell, E.: The max-atom problem and its relevance. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 47–61. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1_4

    Chapter  MATH  Google Scholar 

  3. Bodirsky, M., Greiner, J.: The complexity of combinations of qualitative constraint satisfaction problems. Log. Methods Comput. Sci. 16(1) (2020). https://lmcs.episciences.org/6129

  4. Bodirsky, M., Greiner, J.: Tractable combinations of theories via sampling (2020). https://arxiv.org/abs/2012.01199

  5. Bodirsky, M., Grohe, M.: Non-dichotomies in constraint satisfaction complexity. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 184–196. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_16

    Chapter  Google Scholar 

  6. Bodirsky, M., Macpherson, D., Thapper, J.: Constraint satisfaction tractability from semi-lattice operations on infinite sets. Trans. Comput. Log. (ACM-TOCL) 14(4), 1–30 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bodirsky, M., Nešetřil, J.: Constraint satisfaction with countable homogeneous templates. J. Log. Comput. 16(3), 359–373 (2006)

    Article  MathSciNet  Google Scholar 

  8. Cooper, M.C.: An optimal k-consistency algorithm. Artif. Intell. 41(1), 89–95 (1989). https://doi.org/10.1016/0004-3702(89)90080-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Dalmau, V., Pearson, J.: Closure functions and width 1 problems. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 159–173. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48085-3_12

    Chapter  MATH  Google Scholar 

  10. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and applications. Commun. ACM 54(9), 69–77 (2011). https://doi.org/10.1145/1995376.1995394

    Article  Google Scholar 

  11. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory. SIAM J. Comput. 28, 57–104 (1999)

    Article  MathSciNet  Google Scholar 

  12. Gol’dberg, M.K., Livshits, E.M.: On minimal universal trees. Math. Notes Acad. Sci. USSR 4, 713–717 (1968). https://doi.org/10.1007/BF01116454

    Article  MathSciNet  MATH  Google Scholar 

  13. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  14. Jeavons, P., Cohen, D., Cooper, M.: Constraints, consistency and closure. Artif. Intell. 101(1–2), 251–265 (1998)

    Article  MathSciNet  Google Scholar 

  15. Lozin, V., Rudolf, G.: Minimal universal bipartite graphs. Ars Comb. 84, 345–356 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Moon, J.W.: On minimal n-universal graphs. Proc. Glasgow Math. Assoc. 7(1), 32–33 (1965). https://doi.org/10.1017/S2040618500035139

    Article  MathSciNet  MATH  Google Scholar 

  17. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979). https://doi.org/10.1145/357073.357079

    Article  MATH  Google Scholar 

  18. Oppen, D.C.: Complexity, convexity and combinations of theories. Theor. Comput. Sci. 12(3), 291–302 (1980). https://doi.org/10.1016/0304-3975(80)90059-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Schulz, K.U.: Why combined decision problems are often intractable. In: Kirchner, H., Ringeissen, C. (eds.) FroCoS 2000. LNCS (LNAI), vol. 1794, pp. 217–244. Springer, Heidelberg (2000). https://doi.org/10.1007/10720084_15

    Chapter  Google Scholar 

  20. Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of satisfiability procedures. Theor. Comput. Sci. 290(1), 291–353 (2003). https://doi.org/10.1016/S0304-3975(01)00332-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Greiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bodirsky, M., Greiner, J. (2021). Tractable Combinations of Theories via Sampling. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds) Logics in Artificial Intelligence. JELIA 2021. Lecture Notes in Computer Science(), vol 12678. Springer, Cham. https://doi.org/10.1007/978-3-030-75775-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75775-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75774-8

  • Online ISBN: 978-3-030-75775-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics