Skip to main content

Discovering Dense Correlated Subgraphs in Dynamic Networks

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12712))

Included in the following conference series:

  • 3695 Accesses

Abstract

Given a dynamic network, where edges appear and disappear over time, we are interested in finding sets of edges that have similar temporal behavior and form a dense subgraph. Formally, we define the problem as the enumeration of the maximal subgraphs that satisfy specific density and similarity thresholds. To measure the similarity of the temporal behavior, we use the correlation between the binary time series that represent the activity of the edges. For the density, we study two variants based on the average degree. For these problem variants we enumerate the maximal subgraphs and compute a compact subset of subgraphs that have limited overlap. We propose an approximate algorithm that scales well with the size of the network, while achieving a high accuracy. We evaluate our framework on both real and synthetic datasets. The results of the synthetic data demonstrate the high accuracy of the approximation and show the scalability of the framework.

P. Rozenshtein—Work done while at Aalto University, Finland and IDS, NUS, Singapore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://tinyurl.com/y5sezq73.

References

  1. Abdelhamid, E., Canim, M., Sadoghi, M., Bhattacharjee, B., Chang, Y.C., Kalnis, P.: Incremental frequent subgraph mining on large evolving graphs. TKDE 29(12), 2710–2723 (2017)

    Google Scholar 

  2. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl Disc. 29(3), 626–688 (2014). https://doi.org/10.1007/s10618-014-0365-y

    Article  MathSciNet  Google Scholar 

  3. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent permutations. JCSS 60(3), 630–659 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., Scott, J.: Impact of human mobility on opportunistic forwarding algorithms. Trans. Mob. Comput. 6(6), 606–620 (2007)

    Article  Google Scholar 

  5. Chan, J., Bailey, J., Leckie, C.: Discovering correlated spatio-temporal changes in evolving graphs. KAIS 16(1), 53–96 (2008)

    Google Scholar 

  6. Chan, J., Bailey, J., Leckie, C., Houle, M.: ciForager: incrementally discovering regions of correlated change in evolving graphs. TKDD (2012)

    Google Scholar 

  7. Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: APPROX (2000)

    Google Scholar 

  8. Fu, T.C.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011)

    Article  Google Scholar 

  9. Galbrun, E., Gionis, A., Tatti, N.: Top-\(k\) overlapping densest subgraphs. Data Min. Knowl. Disc. 30(5), 1134–1165 (2016)

    Article  MathSciNet  Google Scholar 

  10. Guan, Z., Yan, X., Kaplan, L.M.: Measuring two-event structural correlations on graphs. PVLDB 5(11) (2012)

    Google Scholar 

  11. Italia, T.: Telecommunications - tn to tn (2015). https://doi.org/10.7910/DVN/KCRS61

  12. Lahoti, P., Garimella, K., Gionis, A.: Joint non-negative matrix factorization for learning ideological leaning on twitter. In: WSDM (2018)

    Google Scholar 

  13. Ma, S., Hu, R., Wang, L., Lin, X., Huai, J.: Fast computation of dense temporal subgraphs. In: ICDE (2017)

    Google Scholar 

  14. Preti, G., Rozenshtein, P., Gionis, A., Velegrakis, Y.: Excode: a tool for discovering and visualizing regions of correlation in dynamic networks. In: ICDMW (2019)

    Google Scholar 

  15. Rozenshtein, P., Tatti, N., Gionis, A.: Finding dynamic dense subgraphs. TKDD 11(3), 1–30 (2017)

    Article  Google Scholar 

  16. Semertzidis, K., Pitoura, E., Terzi, E., Tsaparas, P.: Finding lasting dense subgraphs. Data Min. Knowl. Disc. 33(5), 1417–1445 (2018). https://doi.org/10.1007/s10618-018-0602-x

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, Z., et al.: Parallelizing maximal clique and k-plex enumeration over graph data. J. Parallel Distr. Comput. 106, 79–91 (2017)

    Google Scholar 

  18. Yu, W., Aggarwal, C.C., Ma, S., Wang, H.: On anomalous hotspot discovery in graph streams. In: ICDM (2013)

    Google Scholar 

  19. Zhang, J., Feigenbaum, J.: Finding highly correlated pairs efficiently with powerful pruning. In: CIKM (2006)

    Google Scholar 

Download references

Acknowledgments

Aristides Gionis and Giulia Preti are supported by EC H2020 RIA project “SoBigData++” (871042). Aristides Gionis is supported by three Academy of Finland projects (286211, 313927, 317085), the ERC Advanced Grant REBOUND (834862), the Wallenberg AI, Autonomous Systems and Software Program (WASP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Preti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Preti, G., Rozenshtein, P., Gionis, A., Velegrakis, Y. (2021). Discovering Dense Correlated Subgraphs in Dynamic Networks. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12712. Springer, Cham. https://doi.org/10.1007/978-3-030-75762-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75762-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75761-8

  • Online ISBN: 978-3-030-75762-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics