Skip to main content

Identification of Bacteria in Hospital Environments by Fluorescence Spectroscopy

  • Conference paper
  • First Online:
Proceedings of the 6th Brazilian Technology Symposium (BTSym’20) (BTSym 2020)

Abstract

Hospital-Acquired Infection (HAI) is a public health issue that is well known and discussed by health and scientific communities. Hand washing by healthcare workers following guidelines provided by the World Health Organization (WHO) is an effective practice in combating nosocomial infections and, consequently, helps prevent cross-contamination of patients in a hospital environment. This article discusses the use of fluorescence spectroscopy as a non-invasive technique that can be used to find bacteria in samples collected when exposed to ultraviolet light. When analyzed using computer programs, results of fluorescence present to healthcare workers a rapid diagnosis in case of nosocomial infections. As a result of the research, we establish a need for enhancement the bacteria detection by spectroscopy using biomarkers with the help of nanotechnology. It can transform smartphones into portable spectrometers to reduce operating costs and bring the technique closer to the patient in a hospital environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pettit D (2001) Improving adherence to hand hygiene practice; a multidisciplinary approach. Emerg Infect Dis 7(2):234–244

    Article  Google Scholar 

  2. Kampf G, Löffler H, Gastmeier P (2009) Hand hygiene for the prevention of nosocomial infections. Deutsches Aerzteblatt Online 106(40):649–656

    Google Scholar 

  3. Petersson LP et al (2014) Portable UV light as an alternative for decontamination. Am J Infect Control 42(12):1334–1336

    Article  Google Scholar 

  4. Jelden KC, Gibbs SG, Smith PW, Hewlett A, Iwen PC, Schmid KK, Lowe JJ (2017) Ultraviolet (UV)-reflective paint with ultraviolet germicidal irradiation (UVGI) improves decontamination of nosocomial bacteria on hospital room. J Occup Environ Hygiene 14(6):456–460

    Article  Google Scholar 

  5. Giana HE et al (2003) Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis. J Fluorescence 13(6):489–493

    Article  Google Scholar 

  6. Baslyman M, Rezaee R, Amyot D, Mouttham A, Chreyh R, Geiger G, Stewart A, Sader S (2015) Real-time and location-based hand hygiene monitoring and notification: proof-of-concept system and experimentation. Pers Ubiquit Comput 19(3):667–688

    Article  Google Scholar 

  7. Mondol MAS, Stankovic JA (2015) Harmony: a hand wash monitoring and reminder system using smart watches. In: Proceedings of the 12th international conference on mobile and ubiquitous systems: computing, networking and services

    Google Scholar 

  8. Majeed Q, Hbail H, Chalechale A (2015) A comprehensive mobile e-healthcare system. In: 2015 7th conference on information and knowledge technology, IKT 2015, pp 1–4

    Google Scholar 

  9. Pittet D, Allegranzi B, Boyce J (2009) The world health organization guidelines on hand hygiene in health care and their consensus recommendations. Infect Control Hospit Epidemiol 30(7):611–622

    Article  Google Scholar 

  10. Ammor MS (2007) Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization. J Fluorescence

    Google Scholar 

  11. Shahzad A et al (2009) Emerging applications of fluorescence spectroscopy in medical microbiology field. J Transl Med 7:1–6

    Article  Google Scholar 

  12. Bhattacharjee A, Datta R, Gratton E, Hochbaum AI (2017) Metabolic fingerprinting of bacteria by fluorescence lifetime imaging microscopy. Sci Rep 7(1):1–10

    Article  Google Scholar 

  13. Belal T, Romdhane K, Jean-Louis B, Tahar B, Eric D, Franoise L (2011) Optical fiber-based synchronous fluorescence spectroscopy for bacterial discrimination directly from colonies on agar plates. Anal Methods 3(1):133–143

    Article  Google Scholar 

  14. Vishwanath K, Ramanujam N (2011) Fluorescence spectroscopy in vivo. In: Encyclopedia of analytical chemistry

    Google Scholar 

  15. Dartnell LR et al (2013) Fluorescence characterization of clinically important bacteria. PLoS One 8:e75270

    Article  Google Scholar 

  16. Zheng X, Wang Y, Bu S, Chen Z, Wan J (2019) Point-of-care detection of 16S rRNA of Staphylococcus aureus based on multiple biotin-labeled DNA probes. Mol Cell Probes 47(July):101427

    Article  Google Scholar 

  17. Suaifan G, Alhogail S, Zourob M (2016) Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosens Bioelectron 90:230–237

    Article  Google Scholar 

  18. Mathelié-Guinlet M, Cohen-Bouhacina T, Gammoudi I, Martin A, Béven L, Delville MH, Grauby-Heywang C (2019) Silica nanoparticles-assisted electrochemical biosensor for the rapid, sensitive and specific detection of Escherichia coli. Sens Actuat B: Chem 292(April):314–320

    Article  Google Scholar 

  19. Lee CW, Chang HY, Wu JK, Tseng FG (2019) Ultra-sensitive electrochemical detection of bacteremia enabled by redox-active gold nanoparticles (raGNPs) in a nano-sieving microfluidic system (NS-MFS). Biosens Bioelectron 133(January):215–222

    Article  Google Scholar 

  20. Munch M, Nielsen LP, Handberg KJ, Jørgensen PH (2001) Detection and subtyping (H5 and H7) of avian type A influenza virus by reverse transcription-PCR and PCR-ELISA. Arch Virol 146(1):87–97

    Article  Google Scholar 

  21. Daly P, Collier T, Doyle S (2002) PCR-ELISA detection of Escherichia coli in milk. Lett Appl Microbiol 34(3):222–226

    Article  Google Scholar 

  22. Li Y, Cao L, Zhang C, Chen Q, Lu F, Bie X, Lu Z (2013) Development and evaluation of a PCR-ELISA assay for the detection and quantification of Cronobacter spp. Int Dairy J 33(1):27–33

    Article  Google Scholar 

  23. Kahya S, Guran HS, Yilmaz O (2016) PCR and ELISA for staphylococcal enterotoxins and detection of some exotoxins from Staphylococcus spp. strains by PCR. Medycyna Weterynaryjna 72(1):28–33

    Google Scholar 

  24. Hu J, Huang R, Wang Y, Wei X, Wang Z, Geng Y, Jing J, Gao H, Sun X, Dong C, Jiang C (2018) Development of duplex PCR-ELISA for simultaneous detection of Salmonella spp. and Escherichia coli O157: H7 in food. J Microbiol Methods 154(136):127–133

    Article  Google Scholar 

  25. Gosnell ME, Anwer AG, Mahbub SB, Menon Perinchery S, Inglis DW, Adhikary PP, Jazayeri JA, Cahill MA, Saad S, Pollock CA, Sutton-McDowall ML, Thompson JG, Goldys EM (2016) Quantitative non-invasive cell characterization and discrimination based on multispectral autofluorescence features. Sci Rep 6(1):23453

    Article  Google Scholar 

  26. Faria AM, Mazon T (2019) Early diagnosis of Zika infection using a ZnO nanostructures-based rapid electrochemical biosensor. Talanta 203(January):153–160

    Article  Google Scholar 

  27. Kizek R, Krejcova L, Michalek P, Merlos Rodrigo M, Heger Z, Krizkova S, Vaculovicova M, Hynek D, Adam V (2015) Nanoscale virus biosensors: state of the art. Nanobiosens Dis Diagnosis 4:47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Alves de Godoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Godoy, H.A. et al. (2021). Identification of Bacteria in Hospital Environments by Fluorescence Spectroscopy. In: Iano, Y., Saotome, O., Kemper, G., Mendes de Seixas, A.C., Gomes de Oliveira, G. (eds) Proceedings of the 6th Brazilian Technology Symposium (BTSym’20). BTSym 2020. Smart Innovation, Systems and Technologies, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-030-75680-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75680-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75679-6

  • Online ISBN: 978-3-030-75680-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics