Skip to main content

Effect of Wire Spacing and Air Velocity on the Electrostatic Precipitation of Nanoparticles

  • Conference paper
  • First Online:
Proceedings of the 6th Brazilian Technology Symposium (BTSym’20) (BTSym 2020)

Abstract

Although electrostatic precipitators are commonly used in the removal of particulate matter, the use of this equipment in the removal of nanoparticles needs to be further elucidated. Thus, this study’s objective was to evaluate the use of a single-stage, wire-plate electrostatic precipitator in the collection of sodium chloride nanoparticles using aerosol velocities of 1.9, 2.9, and 3.9 cm/s and voltages of 8.4, 8.8, and 9.2 kV. Three discharge electrodes (wires) were used and spaced 4, 6, and 12 cm apart for evaluation. It was evidenced that the increase in voltage favors the collection of nanoparticles, with efficiencies of 99.9% for the voltage of 9.2 kV. The increase in wire spacing increased the current inside the equipment and improved the collection efficiency, with greater variations in the voltage of 8.8 kV. The prevalence of electric forces at low gas velocities led the particle collection under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li N, Georas S, Alexis N, Fritz P, Xia T, Williams MA, Horner E, Nel A (2016) A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol 138(2):386–396

    Article  Google Scholar 

  2. Weichenthal S, Dufresne A, Infante-Rivard C, Joseph L (2008) Determinants of ultrafine particle exposures in transportation environments: findings of an 8-month survey conducted in Montréal Canada. J Expo Sci Environ Epidemiol 18(6):551–563

    Article  Google Scholar 

  3. Adams RA, Potter S, Bérubé K, Higgins TP, Jones TP, Evans SA (2019) Prolonged systemic inflammation and damage to the vascular endothelium following intratracheal instillation of air pollution nanoparticles in rats. Clin Hemorh Microcirc 72:1–10

    Article  Google Scholar 

  4. Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects - pros and cons. Environ Health Perspect 114(12):1818–1825

    Article  Google Scholar 

  5. Win-Shwe TT, Fujimaki H (2011) Nanoparticles and neurotoxicity. Int J Mol Sci 12(9):6267–6280

    Article  Google Scholar 

  6. Parker KR (2003) Electrical operation of electrostatic precipitators, 1st edn. Institution of Engineering and Technology, London

    Book  Google Scholar 

  7. Lu Q, Yang Z, Zheng C, Li X, Zhao C, Xu X, Gao X, Luo Z, Ni M, Cen K (2016) Numerical simulation on the fine particle charging and transport behaviors in a wire-plate electrostatic precipitator. Adv Powder Technol 27(5):1905–1911

    Article  Google Scholar 

  8. Lu C, Yi C, Yi R, Liu S (2017) Analysis of the operating parameters of a vortex electrostatic precipitator. Plasma Sci Technol 19(2), 025504

    Google Scholar 

  9. El Dein AZ, Usama K (2014) Experimental and simulation study of V-I characteristics of wire-plate electrostatic precipitators under clean air conditions. Arab J Sci Eng 39(5):4037–4045

    Article  Google Scholar 

  10. Kasdi A (2016) Computation and measurement of corona current density and V-I characteristics in wires-to-plates electrostatic precipitator. J Electrostat 81:1–8

    Article  Google Scholar 

  11. IEEE (2003) Recommended international standard for dimensionless parameters used in electrohydrodynamics. IEEE Trans Dielectr Electr Insul 10(1):3–6

    Google Scholar 

  12. Heitbrink WA, Evans DE, Peters TM, Slavin TJ (2007) Characterization and mapping of very fine particles in an engine machining and assembly facility. J Occup Environ Hyg 4(5):341–351

    Article  Google Scholar 

  13. Alonso M, Alguacil FJ (2002) Electrostatic precipitation of ultrafine particles enhanced by simultaneous diffusional deposition on wire screens. J Air Waste Manag Assoc 52(11):1342–1347

    Article  Google Scholar 

  14. White HJ (1963) Industrial electrostatic precipitation. Addison-Wesley, Reading

    Google Scholar 

  15. Hinds WC (1998) Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd edn. Wiley, New York

    Google Scholar 

  16. Dean JA (1999) Lange’s handbook of chemistry, 15th edn. McGraw-Hill, New York

    Google Scholar 

  17. Oliveira AE, Guerra VG (2018) Influence of particle concentration and residence time on the efficiency of nanoparticulate collection by electrostatic precipitation. J Electrostat 96:1–9

    Article  Google Scholar 

  18. Podliński J, Dekowski J, Mizeraczyk J, Brocilo D, Chang JS (2006) Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency. J Electrostat 64(3–4):259–262

    Article  Google Scholar 

  19. Fujishima H, Morita Y, Okubo M, Yamamoto T (2006) Numerical simulation of three-dimensional electrohydrodynamics of spikedelectrode electrostatic precipitators. IEEE Trans Dielectr Electr Insul 13(1):160–167

    Article  Google Scholar 

  20. Chun YN, Chang JS, Berezin AA, Mizeraczyk J (2007) Numerical modeling of near corona wire electrohydrodynamic flow in a wire-plate electrostatic precipitator. IEEE Trans Dielectr Electr Insul 14(1):119–214

    Article  Google Scholar 

  21. Ning Z, Podlinski J, Shen X, Li S, Wang S, Ping H, Yan K (2016) Electrode geometry optimization in wire-plate electrostatic precipitator and its impact on collection efficiency. J Electrostat 80:76–84

    Article  Google Scholar 

  22. He Z, Dass ETM (2018) Correlation of design parameters with performance for electrostatic precipitator. Part II. Design of experiment based on 3D FEM simulation. Appl Math Model 57:656–669

    Article  Google Scholar 

  23. Oliveira AE, Guerra VG (2018) Effect of ionic flow on the electrostatic precipitationof nanoparticles. In: Proceedings of the 2018 Brazilian technology symposium, vol 1. LCV - Laboratory of Visual Communications, Campinas

    Google Scholar 

  24. Liu Y, Hu B, Zhou L, Jiang Y, Yang L (2016) Improving the removal of fine particles with an electrostatic precipitator by chemical agglomeration. Energy Fuels 30(10):8441–8447

    Article  Google Scholar 

  25. Zukeran A, Sawano H, Yasumoto K (2019) Collection characteristic of nanoparticles emitted from a diesel engine with residual fuel oil and light fuel oil in an electrostatic precipitator. Energies 12(17):3321

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Aquino Lima, F., Guerra, V.G. (2021). Effect of Wire Spacing and Air Velocity on the Electrostatic Precipitation of Nanoparticles. In: Iano, Y., Saotome, O., Kemper, G., Mendes de Seixas, A.C., Gomes de Oliveira, G. (eds) Proceedings of the 6th Brazilian Technology Symposium (BTSym’20). BTSym 2020. Smart Innovation, Systems and Technologies, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-030-75680-2_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75680-2_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75679-6

  • Online ISBN: 978-3-030-75680-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics