Skip to main content

Acute and Lingering Impairments in Post-Concussion Postural Control

  • Chapter
  • First Online:
Concussions in Athletics

Abstract

The 5th International Consensus Statement on Concussions in Sport reports that most athletes recover from concussion and return to sports within a few weeks post-injury. Impairments in postural control are a cardinal symptom following sports-related concussion; however, many studies suggest that these impairments resolve within 3–5 days post-injury based on clinical measures. Multiple recent studies, utilizing diverse and sophisticated research paradigms, are suggesting that this resolution may be premature and that persistent deficits could be normal. Therefore, the overarching purpose of this chapter is to investigate impairments in postural control following concussion and to identify recovery. We investigated the efficacy of “non-novel” tasks including single- and dual-task gait, gait initiation, and gait termination while tracking the individual’s performance across time to identify residual impairments compared to performance on the standard clinical assessment battery. In the acute aftermath of a concussion, subjects demonstrated substantial impairments in postural control across all tasks which is consistent with multiple previous investigations. However, the novel findings were the identification of persistent and lingering impairments in postural control which were present despite apparent full recovery on clinical measures. Specifically, impairments were more apparent when evaluating central control mechanisms (e.g., movement strategies and anticipatory postural adjustments), as standard kinematic variables returned to premorbid values in a timelier manner. These results suggest that individuals may be returning to sports participation prior to complete recovery and could be a mechanism for the high recurrent concussion rate as well as recent speculation associating concussions and other sports-related injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21(5):375–8.

    Article  PubMed  Google Scholar 

  2. McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high school football players: implications for prevention. Clin J Sport Med. 2004;14(1):13–7.

    Article  PubMed  Google Scholar 

  3. Llewellyn TA, Burdette GT, Joyner AB, Buckley TA. Concussion reporting rates at the conclusion of an intercollegiate athletic career. Clin J Sport Med. 2014;24(1):76–9.

    Article  PubMed  Google Scholar 

  4. Meehan WP 3rd, Mannix RC, O’Brien MJ, Collins MW. The prevalence of undiagnosed concussions in athletes. Clin J Sport Med. 2013;23(5):339–42.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kaut KP, DePompei R, Kerr J, Congeni J. Reports of head injury and symptom knowledge among college athletes: implications for assessment and educational intervention. Clin J Sport Med. 2003;13(4):213–21.

    Article  PubMed  Google Scholar 

  6. Players still willing to hide head injuries. Associated Press; 2011. Available from: http://espn.go.com/nfl/story/_/id/7388074/nfl-players-say-hiding-concussions-option.

  7. Davis GA, Iverson GL, Guskiewicz KM, Ptito A, Johnston KM. Contributions of neuroimaging, balance testing, electrophysiology and blood markers to the assessment of sport-related concussion. Br J Sports Med. 2009;43(Suppl 1):i36–45.

    Article  PubMed  Google Scholar 

  8. McCrory P, Meeuwisse W, Dvorak J, Aubry M, Bailes J, Broglio S. Consensus statement on concussion in sport - the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51(11):838–57.

    PubMed  Google Scholar 

  9. Kutcher JS, McCrory P, Davis G, Ptito A, Meeuwisse WH, Broglio SP. What evidence exists for new strategies or technologies in the diagnosis of sports concussion and assessment of recovery? Br J Sports Med. 2013;47(5):299–303.

    Article  PubMed  Google Scholar 

  10. Dashnaw ML, Petraglia AL, Bailes JE. An overview of the basic science of concussion and subconcussion: where we are and where we are going. Neurosurg Focus. 2012;33(6):E5.

    Article  PubMed  Google Scholar 

  11. Dennis EL, Baron D, Bartnik-Olson B, Caeyenberghs K, Esopenko C, Hillary FG, et al. ENIGMA brain injury: framework, challenges, and opportunities. Hum Brain Mapp. 2020.

    Google Scholar 

  12. Unden J, Romner B. Can low serum levels of S100B predict normal CT findings after minor head injury in adults?: an evidence-based review and meta-analysis. J Head Trauma Rehabil. 2010;25(4):228–40.

    Article  PubMed  Google Scholar 

  13. Liu MC, Akinyi L, Scharf D, Mo JX, Larner SF, Muller U, et al. Ubiquitin C-terminal hydrolase-L1 as a biomarker for ischemic and traumatic brain injury in rats. Eur J Neurosci. 2010;31(4):722–32.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Papa L, Akinyi L, Liu MC, Pineda JA, Tepas JJ III, Oli MW, et al. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med. 2010;38(1):138–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jeter CB, Hergenroeder GW, Hylin MJ, Redell JB, Moore AN, Dash PK. Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion. J Neurotrauma. 2013;30(8):657–70.

    Article  PubMed  Google Scholar 

  16. Asken BM, Yang ZH, Xu HY, Weber AG, Hayes RL, Bauer RM, et al. Acute effects of sport-related concussion on serum glial Fibrillary acidic protein, ubiquitin C-terminal hydrolase L1, Total tau, and Neurofilament light measured by a multiplex assay. J Neurotrauma. 2020;37(13):1537–45.

    Article  PubMed  Google Scholar 

  17. Barr WB. Neuropsychological testing of high school athletes - preliminary norms and test-retest indices. Arch Clin Neuropsychol. 2003;18(1):91–101.

    PubMed  Google Scholar 

  18. Broglio SP, Ferrara MS, Macciocchi SN, Baumgartner TA, Elliott R. Test-retest reliability of computerized concussion assessment programs. J Athl Train. 2007;42(4):509–14.

    PubMed  PubMed Central  Google Scholar 

  19. Randolph C. Baseline neuropsychological testing in managing sport-related concussion: does it modify risk? Curr Sports Med Rep. 2011;10(1):21–6.

    Article  PubMed  Google Scholar 

  20. Schatz P. Long-term test-retest reliability of baseline cognitive assessments using ImPACT. Am J Sports Med. 2010;38(1):47–53.

    Article  PubMed  Google Scholar 

  21. Register-Mihalik JK, Guskiewicz KM, Mihalik JP, Schmidt JD, Kerr ZY, McCrea MA. Reliable change, sensitivity, and specificity of a multidimensional concussion assessment battery: implications for caution in clinical practice. J Head Trauma Rehabil. 2013;28(4):274–83.

    Article  PubMed  Google Scholar 

  22. Iverson GL, Lovell MR, Collins MW. Interpreting change on ImPACT following sport concussion. Clin Neuropsychol. 2003;17(4):460–7.

    Article  PubMed  Google Scholar 

  23. Erdal K. Neuropsychological testing for sports-related concussion: how athletes can sandbag their baseline testing without detection. Arch Clin Neuropsychol. 2012;27(5):473–9.

    Article  PubMed  Google Scholar 

  24. Glatts C, Schatz P. “Sandbagging” baseline concussion testing on ImPACT is more difficult than it appears. Arch Clin Neuropsychol. 2012;27(6):621.

    Google Scholar 

  25. Moser RS, Schatz P, Neidzwski K, Ott SD. Group versus individual administration affects baseline neurocognitive test performance. Am J Sports Med. 2011;39(11):2325–30.

    Article  PubMed  Google Scholar 

  26. Resch J, Driscoll A, McCaffrey N, Brown C, Ferrara MS, Macciocchi S, et al. ImPact test-retest reliability: reliably unreliable? J Athl Train. 2013;48(4):506–11.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kamins J, Bigler E, Covassin T, Henry L, Kemp S, Leddy JJ, et al. What is the physiological time to recovery after concussion? Systematic review. Br J Sports Med. 2017;51(12):935–40.

    Article  PubMed  Google Scholar 

  28. Zemper ED. Two-year prospective study of relative risk of a second cerebral concussion. Am J Phys Med Rehabil. 2003;82(9):653–9.

    Article  PubMed  Google Scholar 

  29. Guskiewicz KM, McCrea M, Marshall SW, Cantu RC, Randolph C, Barr W, et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA concussion study. JAMA. 2003;290(19):2549–55.

    Article  CAS  PubMed  Google Scholar 

  30. Collins MW, Lovell MR, Iverson GL, Cantu RC, Maroon JC, Field M. Cumulative effects of concussion in high school athletes. Neurosurgery. 2002;51(5):1175–9.

    Article  PubMed  Google Scholar 

  31. Eisenberg MA, Andrea J, Meehan W, Mannix R. Time interval between concussions and symptom duration. Pediatrics. 2013;132(1):8–17.

    Article  PubMed  Google Scholar 

  32. Fino PC, Becker LN, Fino NF, Griesemer B, Goforth M, Brolinson PG. Effects of recent concussion and injury history on instantaneous relative risk of lower extremity injury in division I collegiate athletes. Clin J Sport Med. 2019;29(3):218–23.

    Article  PubMed  Google Scholar 

  33. Lynall RC, Mauntel TC, Padua DA, Mihalik JP. Acute lower extremity injury rates increase following concussion in college athletes. Med Sci Sports Exerc. 2015;47(12):2487–92.

    Article  PubMed  Google Scholar 

  34. Lynall R, Mauntel T, Pohlig R, Kerr Z, Dompier T, Hall E, et al. Lower extremity musculoskeletal injury risk following concussion recovery in high school athletes. J Athl Train. 2017;52(11):1028–34.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brooks MA, Peterson K, Biese K, Sanfilippo J, Heiderscheit BC, Bell DR. Concussion increases odds of sustaining a lower extremity musculoskeletal injury after return to play among collegiate athletes. Am J Sports Med. 2016;19(3):742–7.

    Article  Google Scholar 

  36. Nordstrom A, Nordstrom P, Ekstrand J. Sports-related concussion increases the risk of subsequent injury by about 50% in elite male football players. Br J Sports Med. 2014;48(19):1447–50.

    Article  PubMed  Google Scholar 

  37. Herman DC, Jones D, Harrison A, Moser M, Tillman S, Farmer K, et al. Concussion may increase the risk of subsequent lower extremity musculoskeletal injury in collegiate athletes. Sports Med. 2017;47(5):1003–10.

    Article  PubMed  PubMed Central  Google Scholar 

  38. McPherson A, Nagai T, Webster K, Hewett T. Musculoskeletal injury risk after sport-related concussion: a systematic review and meta-analysis. Am J Sports Med. 2018;47(7):1754–62.

    Article  PubMed  Google Scholar 

  39. Gilbert FC, Burdette GT, Joyner AB, Llewellyn TA, Buckley TA. Association between concussion and lower extremity injuries in collegiate athletes. Sports Health. 2016;8(6):561–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cross M, Kemp S, Smith A, Trewartha G, Stokes K. Professional Rugby Union players have a 60% greater risk of time loss injury after concussion: a 2-season prospective study of clinical outcomes. Br J Sports Med. 2015;50(15):926–31.

    Article  PubMed  Google Scholar 

  41. Nyberg G, Mossberg KH, Lysholm J, Tegner Y. Subsequent traumatic injuries after concussion in elite ice hockey: a study over 28 years. Curr Res Concussion. 2015;2(3):109–12.

    Google Scholar 

  42. Buckley T, Howard C, Oldham J, Lynall R, Swanik C, Getchell N. No clinical predictors of postconcussion musculoskeletal injury in college athletes. Med Sci Sports Exerc. 2020;52(6):1256–62.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Howell D, Buckley T, Lynall R, Meehan W. Worsening dual-task gait costs after concussion and their association with subsequent sport-related injury. J Neurotrauma. 2018;35(14):1630–6.

    Article  PubMed  Google Scholar 

  44. Oldham JR, Howell DR, Knight CA, Crenshaw JR, Buckley TA. Gait performance is associated with subsequent lower extremity injury following concussion. Med Sci Sports Exerc. 2020;52(11):2279–85.

    Article  CAS  PubMed  Google Scholar 

  45. Pietrosimone B, Golightly YM, Mihalik JP, Guskiewicz KM. Concussion frequency associates with musculoskeletal injury in retired NFL players. Med Sci Sports Exerc. 2015;47(11):2366–72.

    Article  PubMed  Google Scholar 

  46. Kardouni JR, Shing TL, McKinnon CJ, Scofield DE, Proctor SP. Risk for lower extremity injury after concussion: a matched cohort study in soldiers. J Orthop Sports Phys Ther. 2018;48(7):533–40.

    Article  PubMed  Google Scholar 

  47. Guskiewicz KM, Marshall SW, Bailes J, McCrea M, Cantu RC, Randolph C, et al. Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery. 2005;57(4):719–26; discussion 719−26.

    Article  PubMed  Google Scholar 

  48. Guskiewicz KM, Marshall SW, Bailes J, McCrea M, Harding HP Jr, Matthews A, et al. Recurrent concussion and risk of depression in retired professional football players. Med Sci Sports Exerc. 2007;39(6):903–9.

    Article  PubMed  Google Scholar 

  49. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009;68(7):709–35.

    Article  PubMed  Google Scholar 

  50. Schwartz A. Suicide reveals signs of a disease seen in N.F.L. New York Times. September 14, 2010; Sect. News.

    Google Scholar 

  51. McKee AC, Gavett BE, Stern RA, Nowinski CJ, Cantu RC, Kowall NW, et al. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J Neuropathol Exp Neurol. 2010;69(9):918–29.

    Article  CAS  PubMed  Google Scholar 

  52. Cavanaugh JT, Guskiewicz KM, Stergiou N. A nonlinear dynamic approach for evaluating postural control: new directions for the management of sport-related cerebral concussion. Sports Med. 2005;35(11):935–50.

    Article  PubMed  Google Scholar 

  53. Winter DA. Human balance and posture control during standing and walking. Gait Posture. 1995;3(4):193–214.

    Article  Google Scholar 

  54. Shumway-Cook A, Woollacott MH. Motor control: translating research into clinical practice. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  55. Scholz JP, Schoener G, Hsu WL, Jeka JJ, Horak F, Martin V. Motor equivalent control of the center of mass in response to support surface perturbations. Exp Brain Res. 2007;180(1):163–79.

    Article  CAS  PubMed  Google Scholar 

  56. Highstein SM, Holstein GR. The anatomical and physiological framework for vestibular prostheses. Anat Rec (Hoboken). 2012;295(11):2000–9.

    Article  Google Scholar 

  57. LundinOlsson L, Nyberg L, Gustafson Y. “Stops walking when talking” as a predictor of falls in elderly people. Lancet. 1997;349(9052):617.

    Article  CAS  Google Scholar 

  58. Guskiewicz KM. Balance assessment in the Management of Sport-Related Concussion. Clin Sports Med. 2011;30(1):89–102.

    Article  PubMed  Google Scholar 

  59. Buckley TA, Oldham JR, Caccese JB. Postural control deficits identify lingering post-concussion neurological deficits. J Sport Health Sci. 2016;5(1):61–9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Guskiewicz KM. Postural stability assessment following concussion: one piece of the puzzle. Clin J Sport Med. 2001;11(3):182–9.

    Article  CAS  PubMed  Google Scholar 

  61. Ellemberg D, Henry LC, Macciocchi SN, Guskiewicz KM, Broglio SP. Advances in sport concussion assessment: from behavioral to brain imaging measures. J Neurotrauma. 2009;26(12):2365–82.

    Article  PubMed  Google Scholar 

  62. Chandrasekhar SS. The assessment of balance and dizziness in the TBI patient. NeuroRehabilitation. 2013;32(3):445–54.

    Article  PubMed  Google Scholar 

  63. Lei-Rivera L, Sutera J, Galatioto JA, Hujsak BD, Gurley JM. Special tools for the assessment of balance and dizziness in individuals with mild traumatic brain injury. NeuroRehabilitation. 2013;32(3):463–72.

    Article  PubMed  Google Scholar 

  64. Langevin P, Fait P, Fremont P, Roy JS. Cervicovestibular rehabilitation in adult with mild traumatic brain injury: a randomised controlled trial protocol. BMC Sports Sci Med Rehabil. 2019;11(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Schneider KJ, Meeuwisse WH, Nettel-Aguirre A, Barlow K, Boyd L, Kang J, et al. Cervicovestibular rehabilitation in sport-related concussion: a randomised controlled trial. Br J Sports Med. 2014;48(17):1294–U55.

    Article  PubMed  Google Scholar 

  66. Giza CC, Hovda DA. The neurometabolic cascade of concussion. J Athl Train. 2001;36(3):228–35.

    PubMed  PubMed Central  Google Scholar 

  67. Mouzon B, Chaytow H, Crynen G, Bachmeier C, Stewart J, Mullan M, et al. Repetitive mild traumatic brain injury in a mouse model produces learning and memory deficits accompanied by histological changes. J Neurotrauma. 2012;29(18):2761–73.

    Article  PubMed  Google Scholar 

  68. Jansen EC, Larsen RE, Olesen MB. Quantitative Romberg test - measurement and computer calculation of postural stability. Acta Neurol Scand. 1982;66(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  69. Thyssen HH, Brynskov J, Jansen EC, Munsterswendsen J. Normal ranges and reproducibility for the quantitative Romberg test. Acta Neurol Scand. 1982;66(1):100–4.

    Article  CAS  PubMed  Google Scholar 

  70. Khasnis A, Gokula RM. Romberg’s test. J Postgrad Med. 2003;49(2):169–72.

    CAS  PubMed  Google Scholar 

  71. Riemann BL, Guskiewicz KM. Assessment of mild head injury using measures of balance and cognition: a case study. J Sport Rehabil. 1997;6(3):283–9.

    Article  Google Scholar 

  72. Gao J, Hu J, Buckley T, White K, Hass C. Shannon and Renyi entropies to classify effects of mild traumatic brain injury on postural sway. PLoS One. 2011;6(9):e24446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Slobounov S, Cao C, Sebastianelli W, Slobounov E, Newell K. Residual deficits from concussion as revealed by virtual time-to-contact measures of postural stability. Clin Neurophysiol. 2008;119(2):281–9.

    Article  PubMed  Google Scholar 

  74. Slobounov S, Sebastianelli W, Hallett M. Residual brain dysfunction observed one year post-mild traumatic brain injury: combined EEG and balance study. Clin Neurophysiol. 2012;123(9):1755–61.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Slobounov S, Tutwiler R, Sebastianelli W, Slobounov E. Alteration of postural responses to visual field motion in mild traumatic brain injury. Neurosurgery. 2006;59(1):134–9.

    Article  PubMed  Google Scholar 

  76. Cavanaugh JT, Guskiewicz KM, Giuliani C, Marshall S, Mercer V, Stergiou N. Detecting altered postural control after cerebral concussion in athletes with normal postural stability. Br J Sports Med. 2005;39(11):805–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mrazik M, Ferrara MS, Peterson CL, Elliott RE, Courson RW, Clanton MD, et al. Injury severity and neuropsychological and balance outcomes of four college athletes. Brain Inj. 2000;14(10):921–31.

    Article  CAS  PubMed  Google Scholar 

  78. Riemann BL, Guskiewicz KM. Effects of mild head injury on postural stability as measured through clinical balance testing. J Athl Train. 2000;35(1):19–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Peterson CL, Ferrara MS, Mrazik M, Piland T, Elliott T. Evaluation of neuropsychological stability following cerebral domain scores and postural concussion in sports. Clin J Sport Med. 2003;13(4):230–7.

    Article  PubMed  Google Scholar 

  80. Cavanaugh JT, Guskiewicz KM, Stergiou N. Detecting altered postural control after cerebral concussion in athletes without postural instability. Lippincott Williams & Wilkins; 2004.

    Google Scholar 

  81. Register-Mihalik JK, Mihalik JP, Guskiewicz KM. Balance deficits after sports-related concussion in individuals reporting posttraumatic headache. Neurosurgery. 2008;63(1):76–80; discussion −2.

    Article  PubMed  Google Scholar 

  82. Kelly KA, Jordan EM, Burdette GT, Buckley TA. NCAA Division I athletic trainers concussion management practice patterns. J Athl Train. 2013;49(5):665–73.

    Article  Google Scholar 

  83. Buckley T, Burdette G, Kelly K. Concussion-management practice patterns of National Collegiate Athletic Association Division II and III athletic trainers: how the other half lives. J Athl Train. 2015;50(8):879–88.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Broglio SP, Macciocchi SN, Ferrara MS. Sensitivity of the concussion assessment battery. Neurosurgery. 2007;60(6):1050–7.

    Article  PubMed  Google Scholar 

  85. Garcia G-GP, Broglio SP, Lavieri MS, McCrea M, McAllister T, Investigators CC. Quantifying the value of multidimensional assessment models for acute concussion: an analysis of data from the NCAA-DoD care consortium. Sports Med. 2018;48(7):1739–49.

    Article  PubMed  Google Scholar 

  86. Garcia G-GP, Lavieri MS, Jiang R, McAllister T, McCrea M, Broglio SP. A data-driven approach to unlikely, possible, probable, and definite acute concussion assessment. J Neurotrauma. 2019;36(10):1571–83.

    Article  PubMed  Google Scholar 

  87. Luoto TM, Silverberg ND, Kataja A, Brander A, Tenovuo O, Ohman J, et al. Sport concussion assessment tool 2 in a civilian trauma sample with mild traumatic brain injury. J Neurotrauma. 2014;31(8):728–38.

    Article  PubMed  Google Scholar 

  88. King LA, Horak FB, Mancini M, Pierce D, Priest KC, Chesnutt J, et al. Instrumenting the balance error scoring system for use with patients reporting persistent balance problems after mild traumatic brain injury. Arch Phys Med Rehabil. 2014;95(2):353–9.

    Article  PubMed  Google Scholar 

  89. Buckley TA, Munkasy BA, Clouse BP. Sensitivity and specificity of the modified balance error scoring system in concussed student-athletes. Clin J Sports Med. 2017;28(2):174–6.

    Article  Google Scholar 

  90. Carlson CD, Langdon JL, Munkasy BA, Evans KM, Buckley TA. Minimal detectable change scores and reliability of the balance error scoring system in student-athletes with acute concussion. Athl Train Sports Health Care. 2020;12(2):67–73.

    Article  Google Scholar 

  91. Iverson GL, Koehle MS. Normative data for the modified balance error scoring system in adults. Brain Inj. 2013;27(5):596–9.

    Article  PubMed  Google Scholar 

  92. Howell DR, Oldham JR, Meehan WP, DiFabio MS, Buckley TA. Dual task tandem gait and average walking speed in healthy collegiate athletes. Clin J Sports Med. 2019;29(3):238–44.

    Article  Google Scholar 

  93. Oldham JR, DiFabio MS, Kaminski TW, DeWolf RM, Buckley TA. Normative tandem gait in collegiate athletes implications for clinical concussion assessment. Sports Health. 2016;9(4):305–11.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Oldham JR, DiFabio MS, Kaminski TW, DeWolf RM, Howell DR, Buckley TA. Efficacy of tandem gait to identify impaired postural control following concussion. Med Sci Sports Exerc. 2018;50(6):1162–8. PMID: 29315170.

    Article  PubMed  Google Scholar 

  95. Santo A, Lynall RC, Guskiewicz KM, Mihalik JP. Clinical utility of the sport concussion assessment tool 3 (SCAT3) tandem-gait test in high school athletes. J Athl Train. 2017;52(12):1096–100.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Howell DR, Oldham JR, DiFabio M, Vallabhajosula S, Hall EE, Ketcham CJ, et al. Single-task and dual-task gait among collegiate athletes of different sport classifications: implications for concussion management. J Appl Biomech. 2017;33(1):24–31.

    Article  PubMed  Google Scholar 

  97. Oldham JR, Howell DR, Bryk KN, Manois C, Koerte I, Meehan WP, et al. No differences in tandem gait performance between male and female athletes acutely post-concussion. J Sci Med Sport. 2020;23(9):814–9.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Howell DR, Brilliant AN, Meehan WP III. Tandem gait test-retest reliability among healthy child and adolescent athletes. J Athl Train. 2019;54(12):1254–9.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Howell DR, Berkstresser B, Wang F, Buckley TA, Mannix R, Stillman A, et al. Self-reported sleep duration affects tandem gait, but not steady-state gait outcomes among healthy collegiate athletes. Gait Posture. 2018;62:291–6.

    Article  PubMed  Google Scholar 

  100. Lynall RC, Laudner KG, Mihalik JP, Stanek JM. Concussion-assessment and -management techniques used by athletic trainers. J Athl Train. 2013;48(6):844–50.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Buckley T, Baugh C, Meehan W, DiFabio M. Concussion management plan compliance: a study of NCAA power 5 schools. Orthop J Sports Med. 2017;5(4):1–7.

    CAS  Google Scholar 

  102. Riemann BL, Guskiewicz KM, Shields EW. Relationship between clinical and forceplate measures of postural stability. J Sport Rehabil. 1999;8(2):71–82.

    Article  Google Scholar 

  103. McCrea M, Barr WB, Guskiewicz K, Randolph C, Marshall SW, Cantu R, et al. Standard regression-based methods for measuring recovery after sport-related concussion. J Int Neuropsychol Soc. 2005;11(1):58–69.

    Article  PubMed  Google Scholar 

  104. McCrea M, Guskiewicz KM, Marshall SW, Barr W, Randolph C, Cantu RC, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA concussion study. JAMA. 2003;290(19):2556–63.

    Article  CAS  PubMed  Google Scholar 

  105. Caccese JB, Buckley TA, Kaminski TW. Sway area and velocity correlated with MobileMat balance error scoring system (BESS) scores. J Appl Biomech. 2016;32(4):329–34.

    Article  PubMed  Google Scholar 

  106. Mulligan IJ, Boland MA, McIlhenny CV. The balance error scoring system learned response among young adults. Sports Health. 2013;5(1):22–6.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Finnoff JT, Peterson VJ, Hollman JH, Smith J. Intrarater and interrater reliability of the balance error scoring system (BESS). PM R. 2009;1(1):50–4.

    Article  PubMed  Google Scholar 

  108. Broglio SP, Harezlak J, Katz B, Zhao S, McAllister T, McCrea M. Acute sport concussion assessment optimization: a prospective assessment from the CARE consortium. Sports Med. 2019;49(12):1977–87.

    Article  PubMed  Google Scholar 

  109. Hunt TN, Ferrara MS, Bornstein RA, Baumgartner TA. The reliability of the modified balance error scoring system. Clin J Sport Med. 2009;19(6):471–5.

    Article  PubMed  Google Scholar 

  110. McLeod TCV, Perrin DH, Guskiewicz KM, Shultz SJ, Diamond R, Gansneder BM. Serial administration of clinical concussion assessments and learning effects in healthy young athletes. Clin J Sport Med. 2004;14(5):287–95.

    Article  Google Scholar 

  111. Valovich TC, Perrin DH, Gansneder BM. Repeat administration elicits a practice effect with the balance error scoring system but not with the standardized assessment of concussion in high school athletes. J Athl Train. 2003;38(1):51–6.

    PubMed  PubMed Central  Google Scholar 

  112. Burk JM, Munkasy BA, Joyner AB, Buckley TA. Balance error scoring system performance changes after a competitive athletic season. Clin J Sport Med. 2013;23(4):312–7.

    Article  PubMed  Google Scholar 

  113. Caccese J, Best C, Lamond L, DiFabio M, Kaminski T, Watson D, et al. Effects of repetitive head impacts on the concussion assessment battery. Med Sci Sports Exerc. 2019;51(7):1355–61.

    Article  PubMed  Google Scholar 

  114. Broglio SP, Katz BP, Zhao S, McCrea M, McAllister T. Test-retest reliability and interpretation of common concussion assessment tools: findings from the NCAA-DoD CARE consortium. Sports Med. 2018;48(5):1255–68.

    Article  PubMed  Google Scholar 

  115. Katz BP, Kudela M, Harezlak J, McCrea M, McAllister T, Broglio SP. Baseline performance of NCAA athletes on a concussion assessment battery: a report from the CARE consortium. Sports Med. 2018;48(8):1971–85.

    Article  PubMed  Google Scholar 

  116. Susco TM, McLeod TCV, Gansneder BM, Shultz SJ. Balance recovers within 20 minutes after exertion as measured by the balance error scoring system. J Athl Train. 2004;39(3):241–6.

    PubMed  PubMed Central  Google Scholar 

  117. Wilkins JC, McLeod TCV, Perrin DH, Gansneder BM. Performance on the balance error scoring system decreases after fatigue. J Athl Train. 2004;39(2):156–61.

    PubMed  PubMed Central  Google Scholar 

  118. Fox ZG, Mihalik JP, Blackburn JT, Battaglini CL, Guskiewicz KM. Return of postural control to baseline after anaerobic and aerobic exercise protocols. J Athl Train. 2008;43(5):456–63.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Onate JA, Beck BC, Van Lunen BL. On-field testing environment and balance error scoring system performance during preseason screening of healthy collegiate baseball players. J Athl Train. 2007;42(4):446–51.

    PubMed  PubMed Central  Google Scholar 

  120. Weber AF, Mihalik JP, Register-Mihalik JK, Mays S, Prentice WE, Guskiewicz K. Dehydration and performance on clinical concussion measures in collegiate wrestlers. J Athl Train. 2013;48(2):153–60.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Docherty CL, McLeod TCV, Shultz SJ. Postural control deficits in participants with functional ankle instability as measured by the balance error scoring system. Clin J Sport Med. 2006;16(3):203–8.

    Article  PubMed  Google Scholar 

  122. McLeod TCV, Armstrong T, Miller M, Sauers JL. Balance improvements in female high school basketball players after a 6-week neuromuscular-training program. J Sport Rehabil. 2009;18(4):465–81.

    Article  PubMed  Google Scholar 

  123. Erkmen N, Taskin H, Kaplan T, Sanioglu A. The effect of fatiguing exercise on balance performance as measured by the balance error scoring system. Isokinet Exerc Sci. 2009;17(2):121–7.

    Article  Google Scholar 

  124. Caccese JB, Buckley TA, Tierney RT, Rose WC, Glutting JJ, Kaminski TW. Postural control deficits after repetitive soccer heading. Clin J Sport Med. 2021;31(3):266–72.

    PubMed  Google Scholar 

  125. McCrory PR, Berkovic SF. Video analysis of acute motor and convulsive manifestations in sport-related concussion. Neurology. 2000;54(7):1488–91.

    Article  CAS  PubMed  Google Scholar 

  126. Buttner F, Howell DR, Ardern CL, Doherty C, Blake C, Ryan J, et al. Concussed athletes walk slower than non-concussed athletes during cognitive-motor dual-task assessments but not during single-task assessments 2 months after sports concussion: a systematic review and meta-analysis using individual participant data. Br J Sports Med. 2020;54(2):94–101.

    Article  PubMed  Google Scholar 

  127. Parker TM, Osternig LR, Chou L-S. Gait Stability in Athletes and Non-Athletes Following Concussion. Med Sci Sports Exerc. 2006;38(5):S2.

    Article  Google Scholar 

  128. Parker TM, Osternig LR, Lee HJ, van Donkelaar P, Chou LS. The effect of divided attention on gait stability following concussion. Clin Biomech. 2005;20(4):389–95.

    Article  Google Scholar 

  129. Parker TM, Osternig LR, van Donkelaar P, Chou L-S. Recovery of cognitive and dynamic motor function following concussion. Br J Sports Med. 2007;41(12):868–73.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Parker TM, Osternig LR, van Donkelaar P, Chou LS. Balance control during gait in athletes and non-athletes following concussion. Med Eng Phys. 2008;30(8):959–67.

    Article  PubMed  Google Scholar 

  131. Parker TM, Osternig LR, Van Donkelaar P, Chou LS. Gait stability following concussion. Med Sci Sports Exerc. 2006;38(6):1032–40.

    Article  PubMed  Google Scholar 

  132. Catena RD, van Donkelaar P, Chou L-S. The effects of attention capacity on dynamic balance control following concussion. J Neuroeng Rehabil. 2011;8:1–8.

    Article  Google Scholar 

  133. Catena RD, van Donkelaar P, Chou L-S. Different gait tasks distinguish immediate vs. long-term effects of concussion on balance control. J Neuroeng Rehabil. 2009;6:1–7.

    Article  Google Scholar 

  134. Catena RD, van Donkelaar P, Chou L-S. Altered balance control following concussion is better detected with an attention test during gait. Gait Posture. 2007;25(3):406–11.

    Article  PubMed  Google Scholar 

  135. Catena RD, van Donkelaar P, Chou LS. Cognitive task effects on gait stability following concussion. Exp Brain Res. 2007;176(1):23–31.

    Article  PubMed  Google Scholar 

  136. Catena RD, van Donkelaar P, Halterman CI, Chou LS. Spatial orientation of attention and obstacle avoidance following concussion. Exp Brain Res. 2009;194(1):67–77.

    Article  PubMed  Google Scholar 

  137. Fait P, McFadyen BJ, Swaine B, Cantin JF. Alterations to locomotor navigation in a complex environment at 7 and 30 days following a concussion in an elite athlete. Brain Inj. 2009;23(4):362–9.

    Article  CAS  PubMed  Google Scholar 

  138. Fait P, Swaine B, Cantin J-F, Leblond J, McFadyen BJ. Altered integrated locomotor and cognitive function in elite athletes 30 days postconcussion: a preliminary study. J Head Trauma Rehabil. 2013;28(4):293–301.

    Article  PubMed  Google Scholar 

  139. Parrington L, Fino PC, Swanson CW, Murchison CF, Chesnutt J, King LA. Longitudinal assessment of balance and gait after concussion and return to play in collegiate athletes. J Athl Train. 2019;54(4):429–38.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Fino PC, Nussbaum MA, Brolinson PG. Locomotor deficits in recently concussed athletes and matched controls during single and dual-task turning gait: preliminary results. J Neuroeng Rehabil. 2016;13:1–15.

    Article  Google Scholar 

  141. Fino PC. A preliminary study of longitudinal differences in local dynamic stability between recently concussed and healthy athletes during single and dual-task gait. J Biomech. 2016;49(9):1983–8.

    Article  PubMed  Google Scholar 

  142. Fino PC, Nussbaum MA, Brolinson PG. Decreased high-frequency center-of-pressure complexity in recently concussed asymptomatic athletes. Gait Posture. 2016;50:69–74.

    Article  PubMed  Google Scholar 

  143. Berkner J, Meehan WP, Master CL, Howell DR. Gait and quiet-stance performance among adolescents after concussion-symptom resolution. J Athl Train. 2017;52(12):1089–95.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Brown LA, Hall EE, Ketcham CJ, Patel K, Buckley TA, Howell DR, et al. Turn characteristics during gait differ with and without a cognitive demand among collegiate athletes. J Sport Rehabil. 2019;12:1–20.

    Google Scholar 

  145. Howell DR, Osternig LR, Chou L-S. Dual-task effect on gait balance control in adolescents with concussion. Arch Phys Med Rehabil. 2013;94(8):1513–20.

    Article  PubMed  Google Scholar 

  146. Howell DR, Osternig LR, Koester MC, Chou L-S. The effect of cognitive task complexity on gait stability in adolescents following concussion. Exp Brain Res. 2014;232(6):1773–82.

    Article  PubMed  Google Scholar 

  147. Howell DR, Osternig LR, Chou L-S. Adolescents demonstrate greater gait balance control deficits after concussion than young adults. Am J Sports Med. 2015;43(3):625–32.

    Article  PubMed  Google Scholar 

  148. Howell D, Osternig L, Chou LS. Monitoring recovery of gait balance control following concussion using an accelerometer. J Biomech. 2015;48(12):3364–8.

    Article  PubMed  Google Scholar 

  149. Howell DR, Osternig LR, Chou L-S. Return to activity after concussion affects dual-task gait balance control recovery. Med Sci Sports Exerc. 2015;47(4):673–80.

    Article  PubMed  Google Scholar 

  150. Howell DR, Osternig LR, Chou LS. Consistency and cost of dual-task gait balance measure in healthy adolescents and young adults. Gait Posture. 2016;49:176–80.

    Article  PubMed  Google Scholar 

  151. Howell DR, Osternig LR, Christie AD, Chou LS. Return to physical activity timing and dual-task gait stability are associated 2 months following concussion. J Head Trauma Rehabil. 2016;31(4):262–8.

    Article  PubMed  Google Scholar 

  152. Howell DR, Stracciolini A, Geminiani E, Meehan WP 3rd. Dual-task gait differences in female and male adolescents following sport-related concussion. Gait Posture. 2017;54:284–9. https://doi.org/10.1016/j.gaitpost.2017.03.034.

    Article  PubMed  Google Scholar 

  153. Howell DR, Osternig LR, Chou LS. Single-task and dual-task tandem gait test performance after concussion. J Sci Med Sport. 2017;24(17):30256.

    Google Scholar 

  154. Howell DR, Beasley M, Vopat L, Meehan WP. The effect of prior concussion history on dual-task gait following a concussion. J Neurotrauma. 2017;34(4):838–44.

    Article  PubMed  Google Scholar 

  155. Howell DR, Osternig LR, Chou LS. Detection of acute and long-term effects of concussion: dual-task gait balance control versus computerized neurocognitive test. Arch Phys Med Rehabil. 2018;99(7):1318–24.

    Article  PubMed  Google Scholar 

  156. Powers KC, Kalmar JM, Cinelli ME. Dynamic stability and steering control following a sport-induced concussion. Gait Posture. 2014;39(2):728–32.

    Article  PubMed  Google Scholar 

  157. Baker CS, Cinelli ME. Visuomotor deficits during locomotion in previously concussed athletes 30 or more days following return to play. Physiol Rep. 2014;2(12):e12252.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Martini DN, Sabin MJ, DePesa SA, Leal EW, Negrete TN, Sosnoff JJ, et al. The chronic effects of concussion on gait. Arch Phys Med Rehabil. 2011;92(4):585–9.

    Article  PubMed  Google Scholar 

  159. Fritz S, Lusardi M. White paper: “walking speed: the sixth vital sign”. J Geriatr Phys Ther. 2009;32(2):2–5.

    Article  Google Scholar 

  160. Middleton A, Fritz SL, Lusardi M. Walking speed: the functional vital sign. J Aging Phys Act. 2015;23(2):314–22.

    Article  PubMed  Google Scholar 

  161. Howell DR, Mayer AR, Master CL, Leddy J, Zemek R, Meier TB, et al. Prognosis for persistent post concussion symptoms using a multifaceted objective gait and balance assessment approach. Gait Posture. 2020;79:53–9. https://doi.org/10.1016/j.gaitpost.2020.04.013.

    Article  PubMed  Google Scholar 

  162. Buckley TA, Vallabhajosula S, Oldham JD, Munkasy BA, Evans KM, Krazeise DA, et al. Evidence of a conservative gait strategy in athletes with a history of concussions. J Sport Health Sci. 2016;5(4):417–23.

    Article  PubMed  Google Scholar 

  163. van Donkelaar P, Osternig L, Chou LS. Attentional and biomechanical deficits interact after mild traumatic brain injury. Exerc Sport Sci Rev. 2006;34(2):77–82.

    Article  PubMed  Google Scholar 

  164. Chen JK, Johnston KM, Frey S, Petrides M, Worsley K, Ptito A. Functional abnormalities in symptomatic concussed athletes: an MRI study. NeuroImage. 2004;22(1):68–82.

    Article  PubMed  Google Scholar 

  165. Armieri A, Holmes JD, Spaulding SJ, Jenkins ME, Johnson AM. Dual task performance in a healthy young adult population: results from a symmetric manipulation of task complexity and articulation. Gait Posture. 2009;29(2):346–8.

    Article  PubMed  Google Scholar 

  166. Silsupadol P, Lugade V, Shumway-Cook A, van Donkelaar P, Chou LS, Mayr U, et al. Training-related changes in dual-task walking performance of elderly persons with balance impairment: a double-blind, randomized controlled trial. Gait Posture. 2009;29(4):634–9.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Kerr B, Condon SM, McDonald LA. Cognitive spatial processing and the regulation of posture. J Exp Psychol Hum Percept Perform. 1985;11(5):617–22.

    Article  CAS  PubMed  Google Scholar 

  168. Ebersbach G, Dimitrijevic MR, Poewe W. Influence of concurrent tasks on gait - a dual-task approach. Percept Mot Skills. 1995;81(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  169. Shumway-Cook A, Woollacott M. Attentional demands and postural control: the effect of sensory context. J Gerontol A Biol Sci Med Sci. 2000;55(1):M10–6.

    Article  CAS  PubMed  Google Scholar 

  170. Plummer-D’Amato P, Altmann LJP, Saracino D, Fox E, Behrman AL, Marsiske M. Interactions between cognitive tasks and gait after stroke: a dual task study. Gait Posture. 2008;27(4):683–8.

    Article  PubMed  Google Scholar 

  171. Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture. 2002;16(1):1–14.

    Article  PubMed  Google Scholar 

  172. Bell R, Hall RCW. Mental status examination. Am Fam Physician. 1977;16(5):145–52.

    CAS  PubMed  Google Scholar 

  173. Lee H, Sullivan SJ, Schneiders AG. The use of the dual-task paradigm in detecting gait performance deficits following a sports-related concussion: a systematic review and meta-analysis. J Sci Med Sport. 2013;16(1):2–7.

    Article  PubMed  Google Scholar 

  174. Howell DR, Stillman A, Buckley TA, Berkstresser B, Wang F, Meehan WP. The utility of instrumented dual-task gait and tablet-based neurocognitive measurements after concussion. J Sci Med Sport. 2018;21(4):358–62.

    Article  PubMed  Google Scholar 

  175. Howell D, Osternig L, Chou L-S. Return to physical activity following concussion affects recovery in balance control during dual-task walking. Brain Injury. 2014;28(5–6):606.

    Google Scholar 

  176. Howell DR, Brilliant A, Berkstresser B, Wang F, Fraser J, Meehan WP. The association between dual-task gait after concussion and prolonged symptom duration. J Neurotrauma. 2017;34(23):3288–94.

    Article  PubMed  Google Scholar 

  177. Chiu S-L, Osternig L, Chou L-S. Concussion induces gait inter-joint coordination variability under conditions of divided attention and obstacle crossing. Gait Posture. 2013;38(4):717–22.

    Article  PubMed  Google Scholar 

  178. Cossette I, Ouellet M-C, McFadyen BJ. A preliminary study to identify locomotor-cognitive dual tasks that reveal persistent executive dysfunction after mild traumatic brain injury. Arch Phys Med Rehabil. 2014;95(8):1594–7.

    Article  PubMed  Google Scholar 

  179. Cossette I, Gagne ME, Ouellet MC, Fait P, Gagnon I, Sirois K, et al. Executive dysfunction following a mild traumatic brain injury revealed in early adolescence with locomotor-cognitive dual-tasks. Brain Inj. 2016;30(13–14):1648–55.

    Article  PubMed  Google Scholar 

  180. Dorman JC, Valentine VD, Munce TA, Tjarks BJ, Thompson PA, Bergeron MF. Tracking postural stability of young concussion patients using dual-task interference. J Sci Med Sport. 2015;18(1):2–7.

    Article  PubMed  Google Scholar 

  181. Buckley TA, Oldham JR, Watson DJ, Murray NG, Munkasy BA, Evans KM. Repetitive head impacts in football do not impair dynamic postural control. Med Sci Sports Exerc. 2019;51(1):132–40.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Howell DR, Buckley TA, Berkstresser B, Wang F, Meehan WP. Identification of postconcussion dual-task gait abnormalities using normative reference values. J Appl Biomech. 2019;35(4):290–6.

    Article  PubMed  Google Scholar 

  183. Mille ML, Hilliard MJ, Martinez KM, Simuni T, Rogers MW. Acute effects of a lateral postural assist on voluntary step initiation in patients with Parkinson’s disease. Mov Disord. 2007;22(1):20–7.

    Article  PubMed  Google Scholar 

  184. Pagnacco G, Carrick FR, Pascolo PB, Rossi R, Oggero E. Learning effect of standing on foam during posturographic testing preliminary findings. Biomed Sci Instrum. 2012;48:332–9.

    PubMed  Google Scholar 

  185. Chang HA, Krebs DE. Dynamic balance control in elders: gait initiation assessment as a screening tool. Arch Phys Med Rehabil. 1999;80(5):490–4.

    Article  CAS  PubMed  Google Scholar 

  186. Hass CJ, Gregor RJ, Waddell DE, Oliver A, Smith DW, Fleming RP, et al. The influence of Tai Chi training on the center of pressure trajectory during gait initiation in older adults. Arch Phys Med Rehabil. 2004;85(10):1593–8.

    Article  PubMed  Google Scholar 

  187. Mille ML, Johnson ME, Martinez KM, Rogers MW. Age-dependent differences in lateral balance recovery through protective stepping. Clin Biomech. 2005;20(6):607–16.

    Article  Google Scholar 

  188. Brunt D, Vanderlinden DW, Behrman AL. The relation between limb loading and control parameters of gait initiation in persons with stroke. Arch Phys Med Rehabil. 1995;76(7):627–34.

    Article  CAS  PubMed  Google Scholar 

  189. Halliday SE, Winter DA, Frank JS, Patla AE, Prince F. The initiation of gait in young, elderly, and Parkinson’s disease subjects. Gait Posture. 1998;8(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  190. Tokuno CD, Sanderson DJ, Inglis JT, Chua R. Postural and movement adaptations by individuals with a unilateral below-knee amputation during gait initiation. Gait Posture. 2003;18(3):158–69.

    Article  PubMed  Google Scholar 

  191. Vallabhajosula S, Buckley TA, Tillman MD, Hass CJ. Age and Parkinson’s disease related kinematic alterations during multi-directional gait initiation. Gait Posture. 2013;37(2):280–6.

    Article  PubMed  Google Scholar 

  192. Hass CJ, Buckley TA, Pitsikoulis C, Barthelemy EJ. Progressive resistance training improves gait initiation in individuals with Parkinson’s disease. Gait Posture. 2012;35(4):669–73.

    Article  PubMed  Google Scholar 

  193. Polcyn AF, Lipsitz LA, Kerrigan DC, Collins JJ. Age-related changes in the initiation of gait: degradation of central mechanisms for momentum generation. Arch Phys Med Rehabil. 1998;79(12):1582–9.

    Article  CAS  PubMed  Google Scholar 

  194. Jian Y, Winter DA, Ishac MG, Gilchrist L. Trajectory of the body COG and COP during initiation and termination of gait. Gait Posture. 1993;1(1):9–22.

    Article  Google Scholar 

  195. Brunt D, Short M, Trimble M, Liu SM. Control strategies for initiation of human gait are influenced by accuracy constraints. Neurosci Lett. 2000;285(3):228–30.

    Article  CAS  PubMed  Google Scholar 

  196. Massion J. Movement, posture and equilibrium - interaction and coordination. Prog Neurobiol. 1992;38(1):35–56.

    Article  CAS  PubMed  Google Scholar 

  197. Chang W-H, Tang P-F, Wang Y-H, Lin K-H, Chiu M-J, Chen S-HA. Role of the premotor cortex in leg selection and anticipatory postural adjustments associated with a rapid stepping task in patients with stroke. Gait Posture. 2010;32(4):487–93.

    Article  PubMed  Google Scholar 

  198. Winter DA, Prince F, Frank JS, Powell C, Zabjek KF. Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol. 1996;75(6):2334–43.

    Article  CAS  PubMed  Google Scholar 

  199. Hass CJ, Waddell DE, Fleming RP, Juncos JL, Gregor RJ. Gait initiation and dynamic balance control in Parkinson’s disease. Arch Phys Med Rehabil. 2005;86(11):2172–6.

    Article  PubMed  Google Scholar 

  200. Hass CJ, Waddell DE, Wolf SL, Juncos JL, Gregor RJ. Gait initiation in older adults with postural instability. Clin Biomech. 2008;23(6):743–53.

    Article  Google Scholar 

  201. Buckley TA. Concussion and gait. In: Li L, Holmes M, editors. Gait biometrics: basic patterns, role of neurological disorders and effects of physical activity. 1st ed. Hauppauge: Nova Science Publishers; 2014. p. 141–64.

    Google Scholar 

  202. Buckley T, Oldham J, Munkasy B, Evans K. Decreased anticipatory postural adjustments during gait initiation acutely post-concussion. Arch Phys Med Rehabil. 2017;98(10):1962–8. PMID: 28583462.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Buckley TA, Munkasy BA, Krazeise DA, Oldham JR, Evans KM, Clouse B. Differential effects of acute and multiple concussions on gait initiation performance. Arch Phys Med Rehabil. 2020;25(20):30218–5.

    Google Scholar 

  204. Doherty C, Zhao L, Ryan J, Komaba Y, Inomata A, Caulfield B. Concussion is associated with altered preparatory postural adjustments during gait initiation. Hum Mov Sci. 2017;52:160–9.

    Article  PubMed  Google Scholar 

  205. Buckley TA, Murray N, Munkasy BA, Oldham JR, Evans KM, Clouse BP. Impairments in Dynamic Postural Control Across Concussion Clinical Milestones. J Neurotrauma. 2020;38(1):86–93.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Howell DR, Lynall RC, Buckley TA, Herman DC. Neuromuscular control deficits and the risk of subsequent injury after a concussion: a scoping review. Sports Med. 2018;48(5):1097–115.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Wang JJ, Wai YY, Weng YH, Ng KK, Huang YZ, Ying LL, et al. Functional MRI in the assessment of cortical activation during gait-related imaginary tasks. J Neural Transm. 2009;116(9):1087–92.

    Article  PubMed  Google Scholar 

  208. Perry SD, Santos LC, Patla AE. Contribution of vision and cutaneous sensation to the control of centre of mass (COM) during gait termination. Brain Res. 2001;913(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  209. Sparrow WA, Tirosh O. Gait termination: a review of experimental methods and the effects of ageing and gait pathologies. Gait Posture. 2005;22(4):362–71.

    Article  CAS  PubMed  Google Scholar 

  210. Bishop MD, Brunt D, Pathare N, Patel B. The interaction between leading and trailing limbs during stopping in humans. Neurosci Lett. 2002;323(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  211. Bishop MD, Brunt D, Kukulka C, Tillman MD, Pathare N. Braking impulse and muscle activation during unplanned gait termination in human subjects with parkinsonism. Neurosci Lett. 2003;348(2):89–92.

    Article  CAS  PubMed  Google Scholar 

  212. O’Kane FW, McGibbon CA, Krebs DE. Kinetic analysis of planned gait termination in healthy subjects and patients with balance disorders. Gait Posture. 2003;17(2):170–9.

    Article  PubMed  Google Scholar 

  213. Crenna P, Cuong DM, Breniere Y. Motor programmes for the termination of gait in humans: organisation and velocity-dependent adaptation. J Physiol. 2001;537(3):1059–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Tirosh O, Sparrow WA. Age and walking speed effects on muscle recruitment in gait termination. Gait Posture. 2005;21(3):279–88.

    Article  PubMed  Google Scholar 

  215. Hase K, Stein RB. Analysis of rapid stopping during human walking. J Neurophysiol. 1998;80(1):255–61.

    Article  CAS  PubMed  Google Scholar 

  216. Bishop M, Brunt D, Marjama-Lyons J. Do people with Parkinson’s disease change strategy during unplanned gait termination? Neurosci Lett. 2006;397(3):240–4.

    Article  CAS  PubMed  Google Scholar 

  217. Wikstrom EA, Bishop MD, Inamdar AD, Hass CJ. Gait termination control strategies are altered in chronic ankle instability subjects. Med Sci Sports Exerc. 2010;42(1):197–205.

    Article  PubMed  Google Scholar 

  218. Menant JC, Steele JR, Menz HB, Munro BJ, Lord SR. Rapid gait termination: effects of age, walking surfaces and footwear characteristics. Gait Posture. 2009;30(1):65–70.

    Article  PubMed  Google Scholar 

  219. Vrieling AH, van Keeken HG, Schoppen T, Otten E, Halbertsma JPK, Hof AL, et al. Gait termination in lower limb amputees. Gait Posture. 2008;27(1):82–90.

    Article  CAS  PubMed  Google Scholar 

  220. Vrieling AH, van Keeken HG, Schoppen T, Hof AL, Otten B, Halbertsma JPK, et al. Gait adjustments in obstacle crossing, gait initiation and gait termination after a recent lower limb amputation. Clin Rehabil. 2009;23(7):659–71.

    Article  PubMed  Google Scholar 

  221. Miff SC, Childress DS, Gard SA, Meier MR, Hansen AH. Temporal symmetries during gait initiation and termination in nondisabled ambulators and in people with unilateral transtibial limb loss. J Rehabil Res Dev. 2005;42(2):175–82.

    Article  PubMed  Google Scholar 

  222. Oates AR, Frank JS, Patla AE, VanOoteghem K, Horak FB. Control of dynamic stability during gait termination on a slippery surface in Parkinson’s disease. Mov Disord. 2008;23(14):1977–83.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Cameron D, Murphy A, Morris ME, Raghav S, Iansek R. Planned stopping in people with Parkinson. Parkinsonism Relat Disord. 2010;16(3):191–6.

    Article  CAS  PubMed  Google Scholar 

  224. Oldham JR, Munkasy BA, Evans KM, Wikstrom EA, Buckley TA. Altered dynamic postural control during gait termination following concussion. Gait Posture. 2016;49:437–42.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Buckley T, Munkasy B, Tapia-Lovler T, Wikstrom E. Altered gait termination strategies following a concussion. Gait Posture. 2013;38(3):549–51. PMID: 23489951.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Rahn C, Munkasy BA, Joyner AB, Buckley TA. Sideline performance of the balance error scoring system during a live sporting event. Clinical Journal of Sport Medicine. 2015;25(3):248–53. PMID: 25098674.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Buckley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buckley, T.A., Bryk, K.N., Hunzinger, K.J., Enrique, A.L. (2021). Acute and Lingering Impairments in Post-Concussion Postural Control. In: Slobounov, S.M., Sebastianelli, W.J. (eds) Concussions in Athletics. Springer, Cham. https://doi.org/10.1007/978-3-030-75564-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75564-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75563-8

  • Online ISBN: 978-3-030-75564-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics