Skip to main content

Functional Magnetic Resonance Imaging in Sport-Related Concussions

  • Chapter
  • First Online:
Concussions in Athletics

Abstract

Functional magnetic resonance imaging (fMRI) offers great promise for elucidating the underlying neuropathology associated with dynamic processes and intrinsic neuronal activation (i.e., functional connectivity; fcMRI). This chapter begins with a discussion of the physiological underpinnings of the blood oxygen level-dependent (BOLD) response and the many ways in which head trauma can affect this complex signal. Next, we present a review of current findings. Evoked fMRI studies of sport-related concussion (SRC) have indicated alterations of the BOLD signal during the acute phase of injury, with conflicting results for the semi-acute to chronic phases. Alterations of fcMRI within the default mode network and other networks have been reported following SRC, which may contribute to athletes’ reports of increased distractibility and other neuropsychological problems. Both evoked and fcMRI studies have suggested that biologically based disruption of emotional processing neural networks is associated with prolonged psychological symptoms. Finally, we focus on the considerable methodological challenges of performing fMRI research with concussed athletes. We posit that the fMRI signal represents a complex filter through which researchers can assess the physiological correlates of protracted recovery or chronic impairments, an important goal for the burgeoning field of SRC research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCrory P, Meeuwisse W, Dvorak J, Aubry M, Bailes J, Broglio S, Cantu RC, Cassidy D, Echemendia RJ, Castellani RJ, Davis GA, Ellenbogen R, Emery C, Engebretsen L, Feddermann-Demont N, Giza CC, Guskiewicz KM, Herring S, Iverson GL, Johnston KM, Kissick J, Kutcher J, Leddy JJ, Maddocks D, Makdissi M, Manley GT, McCrea M, Meehan WP, Nagahiro S, Patricios J, Putukian M, Schneider KJ, Sills A, Tator CH, Turner M, Vos PE. Consensus statement on concussion in sport-the 5(th) international conference on concussion in sport held in Berlin October 2016. Br J Sports Med. 2017;51(11):838–47.

    PubMed  Google Scholar 

  2. Mayer AR, Quinn DK, Master CL. The spectrum of mild traumatic brain injury: a review. Neurology. 2017;89(6):623–32.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Haider MN, Leddy JJ, Pavlesen S, Kluczynski M, Baker JG, Miecznikowski JC, Willer BS. A systematic review of criteria used to define recovery from sport-related concussion in youth athletes. Br J Sports Med. 2018;52(18):1179–90.

    Article  PubMed  Google Scholar 

  4. Harvell BJ, Helmer SD, Ward JG, Ablah E, Grundmeyer R, Haan JM. Head CT guidelines following concussion among the youngest trauma patients: can we limit radiation exposure following traumatic brain injury? Kans J Med. 2018;11(2):1–17.

    PubMed  Google Scholar 

  5. Seabury SA, Gaudette E, Goldman DP, Markowitz AJ, Brooks J, McCrea MA, Okonkwo DO, Manley GT, Adeoye O, Badjatia N, Boase K, Bodien Y, Bullock MR, Chesnut R, Corrigan JD, Crawford K, Diaz-Arrastia R, Dikmen S, Duhaime AC, Ellenbogen R, Feeser VR, Ferguson A, Foreman B, Gardner R, Giacino J, Gonzalez L, Gopinath S, Gullapalli R, Hemphill JC, Hotz G, Jain S, Korley F, Kramer J, Kreitzer N, Levin H, Lindsell C, Machamer J, Madden C, Martin A, McAllister T, Merchant R, Mukherjee P, Nelson L, Noel F, Palacios E, Perl D, Puccio A, Rabinowitz M, Robertson C, Rosand J, Sander A, Satris G, Schnyer D, Sherer M, Stein M, Taylor S, Temkin N, Toga A, Valadka A, Vassar M, Vespa P, Wang K, Yue J, Yuh E, Zafonte R. Assessment of follow-up care after emergency department presentation for mild traumatic brain injury and concussion: results from the TRACK-TBI study. JAMA Netw Open. 2018;1(1):e180210.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Klein AP, Tetzlaff JE, Bonis JM, Nelson LD, Mayer AR, Huber DL, Harezlak J, Mathews VP, Ulmer JL, Sinson GP, Nencka AS, Koch KM, Wu Y, Saykin AJ, DiFiori JP, Giza CC, Goldman J, Guskiewicz KM, Mihalik JP, Duma SM, Rowson S, Brooks A, Broglio SP, McAllister T, McCrea MA, Meier TB. Prevalence of potentially clinically significant magnetic resonance imaging findings in athletes with and without sport-related concussion. J Neurotrauma. 2019;36(11):1776–85.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bonow RH, Friedman SD, Perez FA, Ellenbogen RG, Browd SR, Mac Donald CL, Vavilala MS, Rivara FP. Prevalence of abnormal magnetic resonance imaging findings in children with persistent symptoms after pediatric sports-related concussion. J Neurotrauma. 2017;34(19):2706–12.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Belanger HG, Spiegel E, Vanderploeg RD. Neuropsychological performance following a history of multiple self-reported concussions: a meta-analysis. J Int Neuropsychol Soc. 2010;16(2):262–7.

    Article  PubMed  Google Scholar 

  9. Moore RD, Kay JJ, Ellemberg D. The long-term outcomes of sport-related concussion in pediatric populations. Int J Psychophysiol. 2018;132(Pt A):14–24.

    Article  PubMed  Google Scholar 

  10. Manley G, Gardner AJ, Schneider KJ, Guskiewicz KM, Bailes J, Cantu RC, Castellani RJ, Turner M, Jordan BD, Randolph C, Dvorak J, Hayden KA, Tator CH, McCrory P, Iverson GL. A systematic review of potential long-term effects of sport-related concussion. Br J Sports Med. 2017;51(12):969–77.

    Article  PubMed  Google Scholar 

  11. Cunningham J. History of sport-related concussion and long-term clinical cognitive health outcomes in retired athletes: a systematic review. J Athl Train. 2020;55(2):132–58.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Joshua K, Erin B, Tracey C, Luke H, Simon K, Leddy John J, Andrew M, Michael MC, Mayumi P, Schneider Kathryn J. What is the physiological time to recovery after concussion? A systematic review. Br J Sports Med. 2017;51(12):935–40.

    Article  Google Scholar 

  13. Bigler ED, Maxwell WL. Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging Behav. 2012;6(2):108–36.

    Article  PubMed  Google Scholar 

  14. Guenette JP, Shenton ME, Koerte IK. Imaging of concussion in young athletes. Neuroimaging Clin N Am. 2018;28(1):43–53.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Narayana S, Charles C, Collins K, Tsao JW, Stanfill AG, Baughman B. Neuroimaging and neuropsychological studies in sports-related concussions in adolescents: current state and future directions. Front Neurol. 2019;10:538.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449–76.

    Article  CAS  PubMed  Google Scholar 

  17. Shine JM, Breakspear M. Understanding the brain by default. Trends Neurosci. 2018;41(5):244–7.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang L, Yang KH, King AI. A proposed injury threshold for mild traumatic brain injury. J Biomech Eng. 2004;126(2):226–36.

    Article  PubMed  Google Scholar 

  19. Mayer AR, Bellgowan PS, Hanlon FM. Functional magnetic resonance imaging of mild traumatic brain injury. Neurosci Biobehav Rev. 2015;49:8–18.

    Article  PubMed  Google Scholar 

  20. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory procedure and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28(5):897–916.

    Article  CAS  PubMed  Google Scholar 

  21. Murphy K, Birn RM, Bandettini PA. Resting-state fMRI confounds and cleanup. NeuroImage. 2013;80:349–59.

    Article  PubMed  Google Scholar 

  22. Smitha KA, Arun KM, Rajesh PG, Thomas B, Kesavadas C. Resting-state seed-based analysis: an alternative to task-based language fMRI and its laterality index. AJNR Am J Neuroradiol. 2017;38(6):1187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev Physiol. 2004;66:735–69.

    Article  CAS  PubMed  Google Scholar 

  25. Mangia S, Tkac I, Gruetter R, Van de Moortele PF, Maraviglia B, Ugurbil K. Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab. 2007;27(5):1055–63.

    Article  CAS  PubMed  Google Scholar 

  26. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA. 1986;83(4):1140–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen Q, Ren H, Duong TQ. CBF BOLD CBV and CMRO(2) fMRI signal temporal dynamics at 500-msec resolution. J Magn Reson Imaging. 2008;27(3):599–606.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Medaglia JD. Functional neuroimaging in traumatic brain injury: from nodes to networks. Front Neurol. 2017;8:407.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Buxton RB, Uludag K, Dubowitz DJ, Liu TT. Modeling the hemodynamic response to brain activation. NeuroImage. 2004;23(Suppl 1):S220–33.

    Article  PubMed  Google Scholar 

  30. Cohen M. Parametric analysis of fMRI data using linear systems methods. NeuroImage. 1997;6(2):93–103.

    Article  CAS  PubMed  Google Scholar 

  31. Buxton RB, Wong EC, Frank LR. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med. 1998;39(6):855–64.

    Article  CAS  PubMed  Google Scholar 

  32. van Zijl PC, Hua J, Lu H. The BOLD post-stimulus undershoot one of the most debated issues in fMRI. NeuroImage. 2012;62(2):1092–102.

    Article  PubMed  Google Scholar 

  33. Liu EY, Haist F, Dubowitz DJ, Buxton RB. Cerebral blood volume changes during the BOLD post-stimulus undershoot measured with a combined normoxia/hyperoxia method. NeuroImage. 2019;185:154–63.

    Article  PubMed  Google Scholar 

  34. Lu H, Golay X, Pekar JJ, van Zijl PC. Sustained poststimulus elevation in cerebral oxygen utilization after vascular recovery. J Cereb Blood Flow Metab. 2004;24(7):764–70.

    Article  PubMed  Google Scholar 

  35. Schroeter ML, Kupka T, Mildner T, Uludag K, von Cramon DY. Investigating the post-stimulus undershoot of the BOLD signal--a simultaneous fMRI and fNIRS study. NeuroImage. 2006;30(2):349–58.

    Article  PubMed  Google Scholar 

  36. van Zijl PC, Hua J, Lu H. The BOLD post-stimulus undershoot one of the most debated issues in fMRI. NeuroImage. 2012;62(2):1092–102.

    Article  PubMed  Google Scholar 

  37. Figley CR, Stroman PW. The role(s) of astrocytes and astrocyte activity in neurometabolism neurovascular coupling and the production of functional neuroimaging signals. Eur J Neurosci. 2011;33(4):577–88.

    Article  PubMed  Google Scholar 

  38. Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869–78.

    Article  CAS  PubMed  Google Scholar 

  39. Redell JB, Maynard ME, Underwood EL, Vita SM, Dash PK, Kobori N. Traumatic brain injury and hippocampal neurogenesis: functional implications. Exp Neurol. 2020;331:113372.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dorsett CR, McGuire JL, DePasquale EA, Gardner AE, Floyd CL, McCullumsmith RE. Glutamate neurotransmission in rodent models of traumatic brain injury. J Neurotrauma. 2017;34(2):263–72.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gasparovic C, Yeo R, Mannell M, Ling J, Elgie R, Phillips J, Doezema D, Mayer AR. Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-magnetic resonance spectroscopy study. J Neurotrauma. 2009;26(10):1635–43.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Henry LC, Tremblay S, Leclerc S, Khiat A, Boulanger Y, Ellemberg D, Lassonde M. Metabolic changes in concussed American football players during the acute and chronic post-injury phases. BMC Neurol. 2011;11:105.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yeo RA, Gasparovic C, Merideth F, Ruhl D, Doezema D, Mayer AR. A longitudinal proton magnetic resonance spectroscopy study of mild traumatic brain injury. J Neurotrauma. 2011;28(1):1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vagnozzi R, Tavazzi B, Signoretti S, Amorini AM, Belli A, Cimatti M, Delfini R, Di Pietro V, Finocchiaro A, Lazzarino G. Temporal window of metabolic brain vulnerability to concussions: mitochondrial-related impairment--part I. Neurosurgery. 2007;61(2):379–88.

    Article  PubMed  Google Scholar 

  45. Vagnozzi R, Signoretti S, Cristofori L, Alessandrini F, Floris R, Isgro E, Ria A, Marziale S, Zoccatelli G, Tavazzi B, Del Bolgia F, Sorge R, Broglio S, McIntosh TK, Lazzarino G. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre proton magnetic resonance spectroscopic study in concussed patients. Brain. 2010;133(11):3232–42.

    Article  PubMed  Google Scholar 

  46. McDevitt J, Rubin LH, De Simone FI, Phillips J, Langford D. Association between (GT)n Promoter polymorphism and recovery from concussion: a pilot study. J Neurotrauma. 2020;37(10):1204–10.

    Article  PubMed  Google Scholar 

  47. Gardner AJ, Iverson GL, Wojtowicz M, Levi CR, Kay-Lambkin F, Schofield PW, Zafonte R, Shultz SR, Lin AP, Stanwell P. MR Spectroscopy Findings in Retired Professional Rugby League Players. Int J Sports Med. 2017;38(3):241–52.

    Article  CAS  PubMed  Google Scholar 

  48. Alosco ML, Tripodis Y, Rowland B, Chua AS, Liao H, Martin B, Jarnagin J, Chaisson CE, Pasternak O, Karmacharya S, Koerte IK, Cantu RC, Kowall NW, McKee AC, Shenton ME, Greenwald R, McClean M, Stern RA, Lin A. A magnetic resonance spectroscopy investigation in symptomatic former NFL players. Brain Imaging Behav. 2019;14(5):1419–29.

    Article  Google Scholar 

  49. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Symptom correlates of cerebral blood flow following acute concussion. Neuroimage Clin. 2017;16:234–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Meier TB, Bellgowan PS, Singh R, Kuplicki R, Polansky M, Mayer AR. Recovery of cerebral blood flow following sports-related concussion. JAMA Neurol. 2015;72(5):530–8.

    Article  PubMed  Google Scholar 

  51. Wang Y, West JD, Bailey JN, Westfall DR, Xiao H, Arnold TW, Kersey PA, Saykin AJ, McDonald BC. Decreased cerebral blood flow in chronic pediatric mild TBI: an MRI perfusion study. Dev Neuropsychol. 2015;40(1):40–4.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Nelson Lindsay D, LaRoche Ashley A, Pfaller Adam Y, Nencka Andrew S, Koch Kevin M, McCrea Michael A. Cerebral blood flow alterations in acute sport-related concussion. J Neurotrauma. 2016;33(13):1227–36.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vespa PM, O’Phelan K, McArthur D, Miller C, Eliseo M, Hirt D, Glenn T, Hovda DA. Pericontusional brain tissue exhibits persistent elevation of lactate/pyruvate ratio independent of cerebral perfusion pressure. Crit Care Med. 2007;35(4):1153–60.

    Article  PubMed  Google Scholar 

  54. Barkhoudarian G, Hovda DA, Giza CC. The molecular pathophysiology of concussive brain injury - an update. Phys Med Rehabil Clin N Am. 2016;27(2):373–93.

    Article  PubMed  Google Scholar 

  55. Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014;75(Suppl 4):S24–33.

    Article  PubMed  Google Scholar 

  56. Stephens JA, Liu P, Lu H, Suskauer SJ. Cerebral blood flow after mild traumatic brain injury: associations between symptoms and post-injury perfusion. J Neurotrauma. 2018;35(2):241–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Park E, Bell JD, Siddiq IP, Baker AJ. An analysis of regional microvascular loss and recovery following two grades of fluid percussion trauma: a role for hypoxia-inducible factors in traumatic brain injury. J Cereb Blood Flow Metab. 2009;29(3):575–84.

    Article  CAS  PubMed  Google Scholar 

  58. Buckley EM, Miller BF, Golinski JM, Sadeghian H, McAllister LM, Vangel M, Ayata C, Meehan WP III, Franceschini MA, Whalen MJ. Decreased microvascular cerebral blood flow assessed by diffuse correlation spectroscopy after repetitive concussions in mice. J Cereb Blood Flow Metab. 2015;35(12):1995–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tagge CA, Fisher AM, Minaeva OV, Gaudreau-Balderrama A, Moncaster JA, Zhang XL, Wojnarowicz MW, Casey N, Lu H, Kokiko-Cochran ON, Saman S, Ericsson M, Onos KD, Veksler R, Senatorov VV Jr, Kondo A, Zhou XZ, Miry O, Vose LR, Gopaul KR, Upreti C, Nowinski CJ, Cantu RC, Alvarez VE, Hildebrandt AM, Franz ES, Konrad J, Hamilton JA, Hua N, Tripodis Y, Anderson AT, Howell GR, Kaufer D, Hall GF, Lu KP, Ransohoff RM, Cleveland RO, Kowall NW, Stein TD, Lamb BT, Huber BR, Moss WC, Friedman A, Stanton PK, AC MK, Goldstein LE. Concussion microvascular injury and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain. 2018;141(2):422–58.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Logsdon AF, Lucke-Wold BP, Turner RC, Huber JD, Rosen CL, Simpkins JW. Role of microvascular disruption in brain damage from traumatic brain injury. Compr Physiol. 2015;5(3):1147–60.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Evaluating cerebrovascular reactivity during the early symptomatic phase of sport concussion. J Neurotrauma. 2019;36(10):1518–25.

    Article  PubMed  Google Scholar 

  62. Len TK, Neary JP, Asmundson GJ, Goodman DG, Bjornson B, Bhambhani YN. Cerebrovascular reactivity impairment after sport-induced concussion. Med Sci Sports Exerc. 2011;43(12):2241–8.

    Article  PubMed  Google Scholar 

  63. Militana AR, Donahue MJ, Sills AK, Solomon GS, Gregory AJ, Strother MK, Morgan VL. Alterations in default-mode network connectivity may be influenced by cerebrovascular changes within 1 week of sports related concussion in college varsity athletes: a pilot study. Brain Imaging Behav. 2016;10:559–68.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Elliott ML, Knodt AR, Cooke M, Kim MJ, Melzer TR, Keenan R, Ireland D, Ramrakha S, Poulton R, Caspi A, Moffitt TE, Hariri AR. General functional connectivity: shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks. NeuroImage. 2019;189:516–32.

    Article  PubMed  Google Scholar 

  65. Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG. Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab. 2006;26(7):865–77.

    Article  CAS  PubMed  Google Scholar 

  66. Mangia S, Giove F, Tkac I, Logothetis NK, Henry PG, Olman CA, Maraviglia B, Di Salle F, Ugurbil K. Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses theoretical predictions and in vivo NMR experimental findings. J Cereb Blood Flow Metab. 2009;29(3):441–63.

    Article  CAS  PubMed  Google Scholar 

  67. Meier TB, Espana LY, Mayer AR, Harezlak J, Nencka AS, Wang Y, Koch KM, Wu YC, Saykin AJ, Giza CC, Goldman J, DiFiori JP, Guskiewicz KM, Mihalik JP, Brooks A, Broglio SP, McAllister T, McCrea MA. Resting-state fMRI metrics in acute sport-related concussion and their association with clinical recovery: a study from the NCAA-DOD CARE consortium. J Neurotrauma. 2020;37(1):152–62.

    Article  PubMed  Google Scholar 

  68. Huang M, Theilmann RJ, Robb A, Angeles A, Nichols S, Drake A, Dandrea J, Levy M, Holland M, Song T, Ge S, Hwang E, Yoo K, Cui L, Baker DG, Trauner D, Coimbra R, Lee RR. Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients. J Neurotrauma. 2009;26(8):1213–26.

    Article  CAS  PubMed  Google Scholar 

  69. Huang MX, Nichols S, Robb A, Angeles A, Drake A, Holland M, Asmussen S, D’Andrea J, Chun W, Levy M, Cui L, Song T, Baker DG, Hammer P, McLay R, Theilmann RJ, Coimbra R, Diwakar M, Boyd C, Neff J, Liu TT, Webb-Murphy J, Farinpour R, Cheung C, Harrington DL, Heister D, Lee RR. An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. NeuroImage. 2012;61(4):1067–82.

    Article  PubMed  Google Scholar 

  70. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A. 2009;106(31):13040–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chou YH, Sundman M, Whitson HE, Gaur P, Chu ML, Weingarten CP, Madden DJ, Wang L, Kirste I, Joliot M, Diaz MT, Li YJ, Song AW, Chen NK. Maintenance and representation of mind wandering during resting-state fMRI. Sci Rep. 2017;7:40722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Belanger HG, Vanderploeg RD, Curtiss G, Warden DL. Recent neuroimaging techniques in mild traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2007;19(1):5–20.

    Article  PubMed  Google Scholar 

  73. Cook MJ, Gardner AJ, Wojtowicz M, Williams WH, Iverson GL, Stanwell P. Task-related functional magnetic resonance imaging activations in patients with acute and subacute mild traumatic brain injury: a coordinate-based meta-analysis. Neuroimage Clin. 2020;25:102129.

    Article  PubMed  Google Scholar 

  74. Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, Cox RW. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect. 2012;2(1):25–32.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mayer AR, Bedrick EJ, Ling JM, Toulouse T, Dodd A. Methods for identifying subject-specific abnormalities in neuroimaging data. Hum Brain Mapp. 2014;35(11):5457–70.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Liau J, Liu TT. Inter-subject variability in hypercapnic normalization of the BOLD fMRI response. NeuroImage. 2009;45(2):420–30.

    Article  PubMed  Google Scholar 

  77. Harris NG, Verley DR, Gutman BA, Thompson PM, Yeh HJ, Brown JA. Disconnection and hyper-connectivity underlie reorganization after TBI: a rodent functional connectomic analysis. Exp Neurol. 2016;277:124–38.

    Article  CAS  PubMed  Google Scholar 

  78. Steinman J, Cahill LS, Koletar MM, Stefanovic B, Sled JG. Acute and chronic stage adaptations of vascular architecture and cerebral blood flow in a mouse model of TBI. NeuroImage. 2019;202:116101.

    Article  PubMed  Google Scholar 

  79. Mayer AR, Toulouse T, Klimaj S, Ling J, Pena A, Bellgowan P. Investigating the properties of the hemodynamic response function following mild traumatic brain injury. J Neurotrauma. 2014;31(2):189–97.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shin SS, Bales JW, Edward Dixon C, Hwang M. Structural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury. Brain Imaging Behav. 2017;11(2):591–610.

    Article  PubMed  Google Scholar 

  81. Reid LB, Boyd RN, Cunnington R, Rose SE. Interpreting intervention induced neuroplasticity with fMRI: the case for multimodal imaging strategies. Neural Plast. 2016;2016:2643491.

    Article  PubMed  Google Scholar 

  82. Di Battista AP, Rhind SG, Churchill N, Richards D, Lawrence DW, Hutchison MG. Peripheral blood neuroendocrine hormones are associated with clinical indices of sport-related concussion. Sci Rep. 2019;9(1):18605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Hutchison MG, Mainwaring L, Senthinathan A, Churchill N, Thomas S, Richards D. Psychological and physiological markers of stress in concussed athletes across recovery milestones. J Head Trauma Rehabil. 2017;32(3):E38–48.

    Article  PubMed  Google Scholar 

  84. Stefanovic B, Warnking JM, Pike GB. Hemodynamic and metabolic responses to neuronal inhibition. NeuroImage. 2004;22(2):771–8.

    Article  PubMed  Google Scholar 

  85. Coverdale NS, Fernandez-Ruiz J, Champagne AA, Mark CI, Cook DJ. Co-localized impaired regional cerebrovascular reactivity in chronic concussion is associated with BOLD activation differences during a working memory task. Brain Imaging Behav. 2020;14(6):2438–49.

    Article  PubMed  Google Scholar 

  86. Bandettini PA, Wong EC. A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. NMR Biomed. 1997;10(4–5):197–203.

    Article  CAS  PubMed  Google Scholar 

  87. Thomason ME, Glover GH. Controlled inspiration depth reduces variance in breath-holding-induced BOLD signal. NeuroImage. 2008;39(1):206–14.

    Article  PubMed  Google Scholar 

  88. Sicard KM, Duong TQ. Effects of hypoxia hyperoxia and hypercapnia on baseline and stimulus-evoked BOLD CBF and CMRO2 in spontaneously breathing animals. NeuroImage. 2005;25(3):850–8.

    Article  PubMed  Google Scholar 

  89. Zappe AC, Uludag K, Oeltermann A, Ugurbil K, Logothetis NK. The influence of moderate hypercapnia on neural activity in the anesthetized nonhuman primate. Cereb Cortex. 2008;18(11):2666–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Biswal BB, Kannurpatti SS, Rypma B. Hemodynamic scaling of fMRI-BOLD signal: validation of low-frequency spectral amplitude as a scalability factor. Magn Reson Imaging. 2007;25(10):1358–69.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cohen ER, Rostrup E, Sidaros K, Lund TE, Paulson OB, Ugurbil K, Kim SG. Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences. NeuroImage. 2004;23(2):613–24.

    Article  PubMed  Google Scholar 

  92. Thomason ME, Foland LC, Glover GH. Calibration of BOLD fMRI using breath holding reduces group variance during a cognitive task. Hum Brain Mapp. 2007;28(1):59–68.

    Article  PubMed  Google Scholar 

  93. Chan ST, Evans KC, Rosen BR, Song TY, Kwong KK. A case study of magnetic resonance imaging of cerebrovascular reactivity: a powerful imaging marker for mild traumatic brain injury. Brain Inj. 2015;29(3):403–7.

    Article  PubMed  Google Scholar 

  94. Dodd AB, Lu H, Wertz CJ, Ling JM, Shaff NA, Wasserott BC, Meier TB, Park G, Oglesbee SJ, Phillips JP, Campbell RA, Liu P, Mayer AR. Persistent alterations in cerebrovascular reactivity in response to hypercapnia following pediatric mild traumatic brain injury. J Cereb Blood Flow Metab. 2020;40(12):2491–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Alan MW, Ellis Michael J, Ruth GM, Vincent W, Roshan R, Fisher Joseph A, David M, Jeffrey L, Lawrence R. Brain MRI CO2 stress testing: a pilot study in patients with concussion. PLoS One. 2014;9(7):e102181.

    Article  CAS  Google Scholar 

  96. Sushmita P, Sorond Farzaneh A, Sydney L, Justin F, Murphy Megan N, Hynan Linda S, Tonia S, Bell Kathleen R. Impaired cerebral vasoreactivity despite symptom resolution in sports-related concussion. J Neurotrauma. 2019;36(16):2385–90.

    Article  Google Scholar 

  97. Belanger HG, Vanderploeg RD. The neuropsychological impact of sports-related concussion: a meta-analysis. J Int Neuropsychol Soc. 2005;11(4):345–57.

    Article  PubMed  Google Scholar 

  98. McAllister TW, Saykin AJ, Flashman LA, Sparling MB, Johnson SC, Guerin SJ, Mamourian AC, Weaver JB, Yanofsky N. Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology. 1999;53(6):1300–8.

    Article  CAS  PubMed  Google Scholar 

  99. McAllister TW, Sparling MB, Flashman LA, Guerin SJ, Mamourian AC, Saykin AJ. Differential working memory load effects after mild traumatic brain injury. NeuroImage. 2001;14(5):1004–12.

    Article  CAS  PubMed  Google Scholar 

  100. Dettwiler A, Murugavel M, Putukian M, Cubon V, Furtado J, Osherson D. Persistent differences in patterns of brain activation after sports-related concussion: a longitudinal functional magnetic resonance imaging study. J Neurotrauma. 2014;31(2):180–8.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chen JK, Johnston KM, Frey S, Petrides M, Worsley K, Ptito A. Functional abnormalities in symptomatic concussed athletes: an fMRI study. NeuroImage. 2004;22(1):68–82.

    Article  PubMed  Google Scholar 

  102. Slobounov SM, Zhang K, Pennell D, Ray W, Johnson B, Sebastianelli W. Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study. Exp Brain Res. 2010;202(2):341–54.

    Article  PubMed  Google Scholar 

  103. Jantzen KJ, Anderson B, Steinberg FL, Kelso JA. A prospective functional MR imaging study of mild traumatic brain injury in college football players. AJNR Am J Neuroradiol. 2004;25(5):738–45.

    PubMed  PubMed Central  Google Scholar 

  104. Clough M, Mutimer S, Wright DK, Tsang A, Costello DM, Gardner AJ, Stanwell P, Mychasiuk R, Sun M, Brady RD, McDonald SJ, Webster KM, Johnstone MR, Semple BD, Agoston DV, White OB, Frayne R, Fielding J, O’Brien TJ, Shultz SR. Oculomotor cognitive control abnormalities in Australian rules football players with a history of concussion. J Neurotrauma. 2018;35(5):730–8.

    Article  PubMed  Google Scholar 

  105. Johnson B, Zhang K, Hallett M, Slobounov S. Functional neuroimaging of acute oculomotor deficits in concussed athletes. Brain Imaging Behav. 2015;9(3):564–73.

    Article  PubMed  Google Scholar 

  106. Johnson B, Hallett M, Slobounov S. Follow-up evaluation of oculomotor performance with fMRI in the subacute phase of concussion. Neurology. 2015;85(13):1163–6.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lovell MR, Pardini JE, Welling J, Collins MW, Bakal J, Lazar N, Roush R, Eddy WF, Becker JT. Functional brain abnormalities are related to clinical recovery and time to return-to-play in athletes. Neurosurgery. 2007;61(2):352–9.

    Article  PubMed  Google Scholar 

  108. Chen JK, Johnston KM, Collie A, McCrory P, Ptito A. A validation of the post concussion symptom scale in the assessment of complex concussion using cognitive testing and functional MRI. J Neurol Neurosurg Psychiatry. 2007;78(11):1231–8.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Pardini JE, Pardini DA, Becker JT, Dunfee KL, Eddy WF, Lovell MR, Welling JS. Postconcussive symptoms are associated with compensatory cortical recruitment during a working memory task. Neurosurgery. 2010;67(4):1020–7.

    Article  PubMed  Google Scholar 

  110. Terry DP, Adams TE, Ferrara MS, Miller LS. FMRI hypoactivation during verbal learning and memory in former high school football players with multiple concussions. Arch Clin Neuropsychol. 2015;30(4):341–55.

    Article  PubMed  Google Scholar 

  111. Elbin RJ, Covassin T, Hakun J, Kontos AP, Berger K, Pfeiffer K, Ravizza S. Do brain activation changes persist in athletes with a history of multiple concussions who are asymptomatic? Brain Inj. 2012;26(10):1217–25.

    Article  CAS  PubMed  Google Scholar 

  112. Terry DP, Faraco CC, Smith D, Diddams MJ, Puente AN, Miller LS. Lack of long-term fMRI differences after multiple sports-related concussions. Brain Inj. 2012;26(13–14):1684–96.

    Article  PubMed  Google Scholar 

  113. Talavage TM, Nauman E, Breedlove EL, Yoruk U, Dye AE, Morigaki K, Feuer H, Leverenz LJ. Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma. 2014;31(4):327–38.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Buckner RL, Andrews-Hanna J, Schacter D. The brain’s default network: anatomy function and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

    Article  PubMed  Google Scholar 

  115. Xu X, Yuan H, Lei X. Activation and connectivity within the default mode network contribute independently to future-oriented thought. Sci Rep. 2016;6:21001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Newsome MR, Li X, Lin X, Wilde EA, Ott S, Biekman B, Hunter JV, Dash PK, Taylor BA, Levin HS. Functional connectivity Is altered in concussed adolescent athletes despite medical clearance to return to play: a preliminary report. Front Neurol. 2016;7:116.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Zhang K, Johnson B, Gay M, Horovitz SG, Hallett M, Sebastianelli W, Slobounov S. Default mode network in concussed individuals in response to the YMCA physical stress test. J Neurotrauma. 2012;29(5):756–65.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Murugesan G, Saghafi B, Davenport E, Wagner B, Urban J, Kelley M, Jones D, Powers A, Whitlow C, Stitzel J, Maldjian J, Montillo A. Single season changes in resting state network power and the connectivity between regions: distinguish head impact exposure level in high school and youth football players. Proc SPIE Int Soc Opt Eng. 2018;10575:105750F.

    PubMed  PubMed Central  Google Scholar 

  119. Murugesan G, Famili A, Davenport E, Wagner B, Urban J, Kelley M, Jones D, Whitlow C, Stitzel J, Maldjian J, Montillo A. Changes in resting state MRI networks from a single season of football distinguishes controls low and high head impact exposure. Proc IEEE Int Symp Biomed Imaging. 2017;2017:464–7.

    PubMed  PubMed Central  Google Scholar 

  120. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Connectomic markers of symptom severity in sport-related concussion: whole-brain analysis of resting-state fMRI. Neuroimage Clin. 2018;18:518–26.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Slobounov SM, Gay M, Zhang K, Johnson B, Pennell D, Sebastianelli W, Horovitz S, Hallett M. Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. NeuroImage. 2011;55(4):1716–27.

    Article  CAS  PubMed  Google Scholar 

  122. Borich M, Babul AN, Yuan PH, Boyd L, Virji-Babul N. Alterations in resting-state brain networks in concussed adolescent athletes. J Neurotrauma. 2015;32(4):265–71.

    Article  PubMed  Google Scholar 

  123. Czerniak SM, Sikoglu EM, Liso Navarro AA, McCafferty J, Eisenstock J, Stevenson JH, King JA, Moore CM. A resting state functional magnetic resonance imaging study of concussion in collegiate athletes. Brain Imaging Behav. 2015;9(2):323–32.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Guell X, Arnold Anteraper S, Gardner AJ, Whitfield-Gabrieli S, Kay-Lambkin F, Iverson GL, Gabrieli J, Stanwell P. Functional connectivity changes in retired Rugby league players: a data-driven functional magnetic resonance imaging study. J Neurotrauma. 2020;37(16):1788–96.

    Article  PubMed  Google Scholar 

  125. Churchill N, Hutchison MG, Leung G, Graham S, Schweizer TA. Changes in functional connectivity of the brain associated with a history of sport concussion: a preliminary investigation. Brain Inj. 2017;31(1):39–48.

    Article  PubMed  Google Scholar 

  126. Meier TB, Bellgowan PS, Mayer AR. Longitudinal assessment of local and global functional connectivity following sports-related concussion. Brain Imaging Behav. 2017;11(1):129–40.

    Article  PubMed  Google Scholar 

  127. Kaushal M, Espana LY, Nencka AS, Wang Y, Nelson LD, McCrea MA, Meier TB. Resting-state functional connectivity after concussion is associated with clinical recovery. Hum Brain Mapp. 2019;40(4):1211–20.

    Article  PubMed  Google Scholar 

  128. Meier TB, Espana LY, Mayer AR, Harezlak J, Nencka AS, Wang Y, Koch KM, Wu YC, Saykin AJ, Giza CC, Goldman J, DiFiori JP, Guskiewicz KM, Mihalik JP, Brooks A, Broglio SP, McAllister T, McCrea MA. Resting-state fMRI metrics in acute sport-related concussion and their association with clinical recovery: a study from the NCAA-DOD CARE consortium. J Neurotrauma. 2019;37(1):152–62.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Meier TB, Lancaster MA, Mayer AR, Teague TK, Savitz J. Abnormalities in functional connectivity in collegiate football athletes with and without a concussion history: implications and role of neuroactive kynurenine pathway metabolites. J Neurotrauma. 2017;34(4):824–37.

    Article  PubMed  Google Scholar 

  130. Calhoun VD, Miller R, Pearlson G, Adali T. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron. 2014;84(2):262–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, Della Penna S, Duyn JH, Glover GH, Gonzalez-Castillo J, Handwerker DA, Keilholz S, Kiviniemi V, Leopold DA, de Pasquale F, Sporns O, Walter M, Chang C. Dynamic functional connectivity: promise issues and interpretations. NeuroImage. 2013;80:360–78.

    Article  PubMed  Google Scholar 

  132. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Scale-free functional brain dynamics during recovery from sport-related concussion. Hum Brain Mapp. 2020;41(10):2567–82.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Saurabh S, Sebastien N, Foad T, Charles T, Richard W, David M, Robin G, Brenda C, Carmela TM, Kozloski James R. Multimodal dynamic brain connectivity analysis based on graph signal processing for former athletes with history of multiple concussions. IEEE Trans Signal Inf Process Netw. 2020;6:284–99.

    Google Scholar 

  134. Churchill NW, Hutchison MG, Richards D, Leung G, Graham SJ, Schweizer TA. Neuroimaging of sport concussion: persistent alterations in brain structure and function at medical clearance. Sci Rep. 2017;7(1):8297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Zhang K, Johnson B, Pennell D, Ray W, Sebastianelli W, Slobounov S. Are functional deficits in concussed individuals consistent with white matter structural alterations: combined FMRI & DTI study. Exp Brain Res. 2010;204(1):57–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Manning KY, Schranz A, Bartha R, Dekaban GA, Barreira C, Brown A, Fischer L, Asem K, Doherty TJ, Fraser DD, Holmes J, Menon RS. Multiparametric MRI changes persist beyond recovery in concussed adolescent hockey players. Neurology. 2017;89(21):2157–66.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Manning KY, Llera A, Dekaban GA, Bartha R, Barreira C, Brown A, Fischer L, Jevremovic T, Blackney K, Doherty TJ, Fraser DD, Holmes J, Beckmann CF, Menon RS. Linked MRI signatures of the brain’s acute and persistent response to concussion in female varsity rugby players. Neuroimage Clin. 2019;21:101627.

    Article  PubMed  Google Scholar 

  138. Shenton ME, Hamoda HM, Schneiderman JS, Bouix S, Pasternak O, Rathi Y, Vu MA, Purohit MP, Helmer K, Koerte I, Lin AP, Westin CF, Kikinis R, Kubicki M, Stern RA, Zafonte R. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 2012;6(2):137–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Champagne AA, Coverdale NS, Germuska M, Cook DJ. Multi-parametric analysis reveals metabolic and vascular effects driving differences in BOLD-based cerebrovascular reactivity associated with a history of sport concussion. Brain Inj. 2019;33(11):1479–89.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Bottari C, Gosselin N, Chen JK, Ptito A. The impact of symptomatic mild traumatic brain injury on complex everyday activities and the link with alterations in cerebral functioning: exploratory case studies. Neuropsychol Rehabil. 2017;27(5):871–90.

    Article  PubMed  Google Scholar 

  141. Gosselin N, Bottari C, Chen JK, Petrides M, Tinawi S, de Guise E, Ptito A. Electrophysiology and functional MRI in post-acute mild traumatic brain injury. J Neurotrauma. 2011;28(3):329–41.

    Article  PubMed  Google Scholar 

  142. Churchill NW, Hutchison MG, Richards D, Leung G, Graham SJ, Schweizer TA. The first week after concussion: blood flow brain function and white matter microstructure. Neuroimage Clin. 2017;14:480–9.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Churchill N, Hutchison M, Richards D, Leung G, Graham S, Schweizer TA. Brain structure and function associated with a history of sport concussion: a multi-modal magnetic resonance imaging study. J Neurotrauma. 2017;34(4):765–71.

    Article  PubMed  Google Scholar 

  144. Ptito A, Chen JK, Johnston KM. Contributions of functional magnetic resonance imaging (fMRI) to sport concussion evaluation. NeuroRehabilitation. 2007;22(3):217–27.

    Article  PubMed  Google Scholar 

  145. Yang J, Peek-Asa C, Covassin T, Torner JC. Post-concussion symptoms of depression and anxiety in division I collegiate athletes. Dev Neuropsychol. 2015;40(1):18–23.

    Article  PubMed  Google Scholar 

  146. Tracey C, Elbin RJ, Erica B, Meghan LF, Kontos Anthony P. A review of psychological issues that may be associated with a sport-related concussion in youth and collegiate athletes. Sport Exerc Perform Psychol. 2017;6(3):220.

    Google Scholar 

  147. Rice SM, Parker AG, Rosenbaum S, Bailey A, Mawren D, Purcell R. Sport-related concussion and mental health outcomes in elite athletes: a systematic review. Sports Med. 2018;48(2):447–65.

    Article  PubMed  Google Scholar 

  148. McCuddy WT, Espana LY, Nelson LD, Birn RM, Mayer AR, Meier TB. Association of acute depressive symptoms and functional connectivity of emotional processing regions following sport-related concussion. Neuroimage Clin. 2018;19:434–42.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Roiger T, Weidauer L, Kern B. A longitudinal pilot study of depressive symptoms in concussed and injured/nonconcussed National Collegiate Athletic Association Division I student-athletes. J Athl Train. 2015;50(3):256–61.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Gouttebarge V, Kerkhoffs GMMJ. Sports career-related concussion and mental health symptoms in former elite athletes. Neurochirurgie. 2021;67(3):280–2.

    Article  CAS  PubMed  Google Scholar 

  151. Brett BL, Mummareddy N, Kuhn AW, Yengo-Kahn AM, Zuckerman SL. The relationship between prior concussions and depression is modified by somatic symptomatology in retired NFL athletes. J Neuropsychiatry Clin Neurosci. 2019;31(1):17–24.

    Article  PubMed  Google Scholar 

  152. Decq P, Gault N, Blandeau M, Kerdraon T, Berkal M, ElHelou A, Dusfour B, Peyrin JC. Long-term consequences of recurrent sports concussion. Acta Neurochir. 2016;158(2):289–300.

    Article  PubMed  Google Scholar 

  153. Gouttebarge V, Hopley P, Kerkhoffs G, Verhagen E, Viljoen W, Wylleman P, Lambert MI. Symptoms of common mental disorders in professional Rugby: an international observational descriptive study. Int J Sports Med. 2017;38(11):864–70.

    Article  PubMed  Google Scholar 

  154. Guskiewicz KM, Marshall SW, Bailes J, McCrea M, Harding HP Jr, Matthews A, Mihalik JR, Cantu RC. Recurrent concussion and risk of depression in retired professional football players. Med Sci Sports Exerc. 2007;39(6):903–9.

    Article  PubMed  Google Scholar 

  155. Dikmen SS, Bombardier CH, Machamer JE, Fann JR, Temkin NR. Natural history of depression in traumatic brain injury. Arch Phys Med Rehabil. 2004;85(9):1457–64.

    Article  PubMed  Google Scholar 

  156. Blaylock RL, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. Surg Neurol Int. 2011;2:107.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Holsboer F, Lauer CJ, Schreiber W, Krieg JC. Altered hypothalamic-pituitary-adrenocortical regulation in healthy subjects at high familial risk for affective disorders. Neuroendocrinology. 1995;62(4):340–7.

    Article  CAS  PubMed  Google Scholar 

  158. Urry HL, van Reekum CM, Johnstone T, Kalin NH, Thurow ME, Schaefer HS, Jackson CA, Frye CJ, Greischar LL, Alexander AL, Davidson RJ. Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. J Neurosci. 2006;26(16):4415–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Watson D, Pennebaker JW. Health complaints stress and distress: exploring the central role of negative affectivity. Psychol Rev. 1989;96(2):234.

    Article  CAS  PubMed  Google Scholar 

  160. Erickson K, Drevets W, Schulkin J. Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neurosci Biobehav Rev. 2003;27(3):233–46.

    Article  CAS  PubMed  Google Scholar 

  161. Johnson EO, Kamilaris TC, Chrousos GP, Gold PW. Mechanisms of stress: a dynamic overview of hormonal and behavioral homeostasis. Neurosci Biobehav Rev. 1992;16(2):115–30.

    Article  CAS  PubMed  Google Scholar 

  162. van der Horn HJ, Out ML, de Koning ME, Mayer AR, Spikman JM, Sommer IE, van der Naalt J. An integrated perspective linking physiological and psychological consequences of mild traumatic brain injury. J Neurol. 2020;267(9):2497–506.

    Article  PubMed  Google Scholar 

  163. Chen JK, Johnston KM, Petrides M, Ptito A. Neural substrates of symptoms of depression following concussion in male athletes with persisting postconcussion symptoms. Arch Gen Psychiatry. 2008;65(1):81–9.

    Article  PubMed  Google Scholar 

  164. van der Horn HJ, Liemburg EJ, Aleman A, Spikman JM, van der Naalt J. Brain networks subserving emotion regulation and adaptation after mild traumatic brain injury. J Neurotrauma. 2016;33(1):1–9.

    Article  PubMed  Google Scholar 

  165. Sperling R, Greve D, Dale A, Killiany R, Holmes J, Rosas HD, Cocchiarella A, Firth P, Rosen B, Lake S, Lange N, Routledge C, Albert M. Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci U S A. 2002;99(1):455–60.

    Article  CAS  PubMed  Google Scholar 

  166. Vollm B, Richardson P, McKie S, Elliott R, Deakin JF, Anderson IM. Serotonergic modulation of neuronal responses to behavioural inhibition and reinforcing stimuli: an fMRI study in healthy volunteers. Eur J Neurosci. 2006;23(2):552–60.

    Article  PubMed  Google Scholar 

  167. Wagner G, Koch K, Schachtzabel C, Sobanski T, Reichenbach JR, Sauer H, Schlosser RG. Differential effects of serotonergic and noradrenergic antidepressants on brain activity during a cognitive control task and neurofunctional prediction of treatment outcome in patients with depression. J Psychiatry Neurosci. 2010;35(4):247.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Hutchison M, Mainwaring LM, Comper P, Richards DW, Bisschop SM. Differential emotional responses of varsity athletes to concussion and musculoskeletal injuries. Clin J Sport Med. 2009;19(1):13–9.

    Article  PubMed  Google Scholar 

  169. Hutchison M, Comper P, Mainwaring L, Richards D. The influence of musculoskeletal injury on cognition: implications for concussion research. Am J Sports Med. 2011;39(11):2331–7.

    Article  PubMed  Google Scholar 

  170. Kontos AP, Elbin RJ, Newcomer Appaneal R, Covassin T, Collins MW. A comparison of coping responses among high school and college athletes with concussion orthopedic injuries and healthy controls. Res Sports Med. 2013;21(4):367–79.

    Article  PubMed  Google Scholar 

  171. Asken BM, Sullan MJ, Snyder AR, Houck ZM, Bryant VE, Hizel LP, McLaren ME, Dede DE, Jaffee MS, DeKosky ST, Bauer RM. Factors influencing clinical correlates of chronic traumatic encephalopathy (CTE): a review. Neuropsychol Rev. 2016;26(4):340–63.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Chein JM, Schneider W. Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Brain Res Cogn Brain Res. 2005;25(3):607–23.

    Article  PubMed  Google Scholar 

  173. Telzer EH, McCormick EM, Peters S, Cosme D, Pfeifer JH, van Duijvenvoorde ACK. Methodological considerations for developmental longitudinal fMRI research. Dev Cogn Neurosci. 2018;33:149–60.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Weissman DH, Woldorff MG, Hazlett CJ, Mangun GR. Effects of practice on executive control investigated with fMRI. Brain Res Cogn Brain Res. 2002;15(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  175. Rosenbaum SB, Lipton ML. Embracing chaos: the scope and importance of clinical and pathological heterogeneity in mTBI. Brain Imaging Behav. 2012;6(2):255–82.

    Article  PubMed  Google Scholar 

  176. Henry LC, Elbin RJ, Collins MW, Marchetti G, Kontos AP. Examining recovery trajectories after sport-related concussion with a multimodal clinical assessment approach. Neurosurgery. 2016;78(2):232–41.

    Article  PubMed  Google Scholar 

  177. Ruff RM, Iverson GL, Barth JT, Bush SS, Broshek DK. Recommendations for diagnosing a mild traumatic brain injury: a National Academy of Neuropsychology education paper. Arch Clin Neuropsychol. 2009;24(1):3–10.

    Article  PubMed  Google Scholar 

  178. Belanger HG, Curtiss G, Demery JA, Lebowitz BK, Vanderploeg RD. Factors moderating neuropsychological outcomes following mild traumatic brain injury: a meta-analysis. J Int Neuropsychol Soc. 2005;11(3):215–27.

    Article  PubMed  Google Scholar 

  179. Johnson B, Dodd A, Mayer AR, Hallett M, Slobounov S. Are there any differential responses to concussive injury in civilian versus athletic populations: a neuroimaging study. Brain Imaging Behav. 2020;14(1):110–7.

    Article  PubMed  Google Scholar 

  180. Monroe DC, Cecchi NJ, Gerges P, Phreaner J, Hicks JW, Small SL. A dose relationship between brain functional connectivity and cumulative head impact exposure in collegiate water polo players. Front Neurol. 2020;11:218.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Reynolds BB, Stanton AN, Soldozy S, Goodkin HP, Wintermark M, Druzgal TJ. Investigating the effects of subconcussion on functional connectivity using mass-univariate and multivariate approaches. Brain Imaging Behav. 2018;12(5):1332–45.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Kontos AP, Sufrinko A, Sandel N, Emami K, Collins MW. Sport-related concussion clinical profiles: clinical characteristics targeted treatments and preliminary evidence. Curr Sports Med Rep. 2019;18(3):82–92.

    Article  PubMed  Google Scholar 

  183. Lee H, Wintermark M, Gean AD, Ghajar J, Manley GT, Mukherjee P. Focal lesions in acute mild traumatic brain injury and neurocognitive outcome: CT versus 3T MRI. J Neurotrauma. 2008;25(9):1049–56.

    Article  PubMed  Google Scholar 

  184. Shauna K, Hanks Robin A, Casey Joseph E, Millis Scott R. Neuropsychologic and functional outcome after complicated mild traumatic brain injury. Arch Phys Med Rehabil. 2008;89(5):904–11.

    Article  Google Scholar 

  185. Viano DC, Casson IR, Pellman EJ, Zhang L, King AI, Yang KH. Concussion in professional football: brain responses by finite element analysis: part 9. Neurosurgery. 2005;57(5):891–916.

    Article  PubMed  Google Scholar 

  186. Clark MD, Varangis EML, Champagne AA, Giovanello KS, Shi F, Kerr ZY, Smith JK, Guskiewicz KM. Effects of career duration concussion history and playing position on white matter microstructure and functional neural recruitment in Former College and Professional Football Athletes. Radiology. 2018;286(3):967–77.

    Article  PubMed  Google Scholar 

  187. Poldrack RA, Baker CI, Durnez J, Gorgolewski KJ, Matthews PM, Munafo MR, Nichols TE, Poline JB, Vul E, Yarkoni T. Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat Rev Neurosci. 2017;18(2):115–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Desmond JE, Glover GH. Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods. 2002;118(2):115–28.

    Article  PubMed  Google Scholar 

  189. Dennis EL, Baron D, Bartnik-Olson B, Caeyenberghs K, Esopenko C, Hillary FG, Kenney K, Koerte IK, Lin AP, Mayer AR, Mondello S, Olsen A, Thompson PM, Tate DF, Wilde EA. ENIGMA brain injury: framework challenges and opportunities. Hum Brain Mapp. 2020. Online ahead of print.

    Google Scholar 

  190. Beidler E, Bretzin AC, Hanock C, Covassin T. Sport-related concussion: knowledge and reporting behaviors among collegiate club-sport athletes. J Athl Train. 2018;53(9):866–72.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Booher MA, Wisniewski J, Smith BW, Sigurdsson A. Comparison of reporting systems to determine concussion incidence in NCAA Division I collegiate football. Clin J Sport Med. 2003;13(2):93.

    Article  PubMed  Google Scholar 

  192. Echemendia RJ, Cantu RC. Return to play following sports-related mild traumatic brain injury: the role for neuropsychology. Appl Neuropsychol. 2003;10(1):48–55.

    Article  PubMed  Google Scholar 

  193. Greenwald RM, Chu JJ, Beckwith JG, Crisco JJ. A proposed method to reduce underreporting of brain injury in sports. Clin J Sport Med. 2012;22(2):83–5.

    Article  PubMed  Google Scholar 

  194. Bianchini KJ, Curtis KL, Greve KW. Compensation and malingering in traumatic brain injury: a dose-response relationship? Clin Neuropsychol. 2006;20(4):831–47.

    Article  PubMed  Google Scholar 

  195. Greve KW, Bianchini KJ, Doane BM. Classification accuracy of the test of memory malingering in traumatic brain injury: results of a known-groups analysis. J Clin Exp Neuropsychol. 2006;28(7):1176–90.

    Article  PubMed  Google Scholar 

  196. Donders J, Lefebre N, Goldsworthy R. Patterns of performance and symptom validity test findings after mild traumatic brain injury. Arch Clin Neuropsychol. 2019;36(3):394–402.

    Article  Google Scholar 

  197. Craig Debbie I, Lininger Monica R, Wayment Heidi A, Huffman AH. Investigation of strategies to improve concussion reporting in American football. Res Sports Med. 2020;28(2):181–93.

    Article  CAS  PubMed  Google Scholar 

  198. Chrisman SP, Quitiquit C, Rivara FP. Qualitative study of barriers to concussive symptom reporting in high school athletics. J Adolesc Health. 2013;52(3):330–5.

    Article  PubMed  Google Scholar 

  199. Broglio SP, Macciocchi SN, Ferrara MS. Sensitivity of the concussion assessment battery. Neurosurgery. 2007;60(6):1050–7.

    Article  PubMed  Google Scholar 

  200. Van Kampen DA, Lovell MR, Pardini JE, Collins MW, Fu FH. The “value added” of neurocognitive testing after sports-related concussion. Am J Sports Med. 2006;34(10):1630–5.

    Article  PubMed  Google Scholar 

  201. Frederic G, Syd JL. The impact of American Tackle Football-related concussion in youth athletes. AJOB Neurosci. 2011;2(4):48–59.

    Article  Google Scholar 

  202. Emily K, Bernice G, Matt H, Baugh Christine M, Calzo Jerel P. Concussion under-reporting and pressure from coaches teammates fans and parents. Soc Sci Med. 2015;134:66–75.

    Article  Google Scholar 

  203. Delaney JS, Caron JG, Correa JA, Bloom GA. Why professional football players chose not to reveal their concussion symptoms during a practice or game. Clin J Sport Med. 2018;28(1):1–12.

    Article  PubMed  Google Scholar 

  204. Delaney JS, Lamfookon C, Bloom GA, Al-Kashmiri A, Correa JA. Why university athletes choose not to reveal their concussion symptoms during a practice or game. Clin J Sport Med. 2015;25(2):113–25.

    Article  PubMed  Google Scholar 

  205. Guskiewicz KM, Marshall SW, Bailes J, McCrea M, Cantu RC, Randolph C, Jordan BD. Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery. 2005;57(4):719–26.

    Article  PubMed  Google Scholar 

  206. Curry AE, Arbogast KB, Metzger KB, Kessler RS, Breiding MJ, Haarbauer-Krupa J, DePadilla L, Greenspan A, Master CL. Risk of repeat concussion among patients diagnosed at a pediatric care network. J Pediatr. 2019;210:13–9.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Scopaz KA, Hatzenbuehler JR. Risk modifiers for concussion and prolonged recovery. Sports Health. 2013;5(6):537–41.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Giza CC, Hovda DA. The neurometabolic cascade of concussion. J Athl Train. 2001;36(3):228–35.

    PubMed  PubMed Central  Google Scholar 

  209. Mayer AR, Stephenson DD, Wertz CJ, et al. Proactive inhibition deficits with normal perfusion after pediatric mild traumatic brain injury. Human Brain Mapp. 2019;40:5370–81.

    Article  Google Scholar 

  210. Mayer AR, Ling JM, Allen EA, et al. Static and dynamic intrinsic connectivity following mild traumatic brain injury. J Neurotrauma. 2015;32(14):1046–55.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Mayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sicard, V., Hergert, D.C., Mayer, A.R. (2021). Functional Magnetic Resonance Imaging in Sport-Related Concussions. In: Slobounov, S.M., Sebastianelli, W.J. (eds) Concussions in Athletics. Springer, Cham. https://doi.org/10.1007/978-3-030-75564-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75564-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75563-8

  • Online ISBN: 978-3-030-75564-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics