Skip to main content

Intra-annular Fibrin Discseel®

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Through utilizing evidence-based medicine, the Discseel® Procedure supersedes the safety and efficacy of earlier treatments attempting to relieve chronic low back pain, chronic neck pain, and extremity radiculopathy. The Discseel® Procedure is composed of two sequentially performed steps: first, annulograms test all discs for annular tears in the region of symptoms, and second, nonautologous fibrin is injected into those annular tears of all morphologically abnormal intervertebral discs (discs) and into annulogram needle puncture holes of all tested discs. The Discseel® Procedure differs from other regenerative medicine procedures in that it meets the criteria allowing protection of its intellectual property (I.P.) through an Act of Congress. This I.P. protection assures that only physicians who are trained and licensed may perform the Discseel® Procedure. In comparison, no spinal surgery and no “stem cell” or other injection procedure possess such attributes allowing for their protection.

The Discseel® Procedure provides greater safety and efficacy than all surgical and nonsurgical spine treatments attempting to treat multilevel, chronic low back pain, with or without radiculopathy. In a prospective study pending publication and presented at AAOM (American Academy of Orthopedic Medicine), 373 subjects demonstrated statistically significant improvement of all critical outcomes, including pain, function, disability, mental health, and quality of life over a 24-month period. To assure research credibility and mitigate controversy, investigators utilized the OBERD Registry, the only registry endorsed by the American Academy of Orthopedic Surgery. Furthermore, this study enrolled subjects who were predisposed to fail based on their history. At a minimum, to enroll, subjects must have first failed conservative chiropractic or physical therapy, followed by treatments including stem cell injections (performed by physicians utilizing strict protocols); epidural injections of corticosteroids; or spinal surgery fusion, arthrodesis, or discectomy. No subject was lost to follow-up, and none experienced any adverse event.

The Discseel® Procedure eliminates flaws inherent to most, if not all, regenerative medicine procedures attempting to treat discs. These flaws include (1) injecting biologics into disc centers, which causes the outward displacement of NP (nucleus pulposus) and associated inflammatory constituents from those treated discs, instead of containing NP and associated noxious constituents within treated discs, as is necessary. Unfortunately, all other treatments injecting “stem cells,” PRP, or anything into the center of discs unfortunately displaces NP outward, opposite the desired goal, and all other disc regenerative medicine treatments. (2) Flawed methodology includes not targeting the AF, especially because it is now agreed that pathology (and disc innervation) resides only within the AF.

Chronic low back pain is the most common cause of disability, and lumbar discs are the most common cause of chronic low back pain. The Discseel® Procedure is defined as the two-step process: introducing nonautologous fibrin, intra-annularly, to treat annular defects (tears), which, directly or indirectly, cause all chronic low back pain. An annulogram is a dynamic test, which easily identifies annular defects (tears) by allowing observation of contrast flow patterns through the 22–25 annular layers of the injected AF being tested. Annulograms possess significantly greater sensitivity than MRIs in identifying annular defects (tears). A normal appearing MRI is often seen in patients with pain whose annulogram clearly demonstrates annular defects. Annulograms are dynamic, analogous to coronary arteriograms, which are also dynamic and coincidentally fraught with skepticism before their widespread acceptance, forever changing the paradigm evaluating CAD. Favorable results of all published and ongoing investigations suggest that annulograms should become the mainstay in spine treatment because annulograms solely possess the ability to accurately diagnose spines, thus allowing a greater likelihood of treatment success. Published in vivo investigations show that fibrin mechanically repairs annular defects (tears) and, incredibly, fibrin stimulates new disc growth, returning discs’ biochemical and mechanical properties to normal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Richardson S, Kalamegam G, Pushparaj P, et al. Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods. 2015.

    Google Scholar 

  2. Chen WH, Lo WC, Lee JJ, et al. Tissue-engineered intervertebral disc and chondrogenesis using human nucleus pulposus regulated through TGF-beta1 in platelet-rich plasma. J Cell Physiol. 2006;209(3):744–54.

    Article  CAS  PubMed  Google Scholar 

  3. Gullung GB, Woodall JW, Tucci MA, et al. James J platelet-rich plasma effects on degenerative disc disease: analysis of histology and imaging in an animal model. Evid Based Spine Care J. 2011;2(4):13–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Obata S, Akeda K, Imanishi T, et al. Effect of autologous platelet-rich plasma-releasate on intervertebral disc degeneration in the rabbit annular puncture model: a preclinical study. Arthritis Res Ther. 2012;14(6).

    Google Scholar 

  5. Kim HJ, Yeom JS, Koh YG, et al. Anti-inflammatory effect of platelet-rich plasma on nucleus pulposus cells with response of TNF alpha and IL-1. J Orthop Res. 2014;32:551–6.

    Article  CAS  PubMed  Google Scholar 

  6. Sawamura K, Ikeda T, Nagae M, et al. Characterization of in vivo effects of platelet-rich plasma and biodegradable gelatin hydrogel microspheres on degenerated intervertebral discs. Tissue Eng Part A. 2009;15:3719–27.

    Article  CAS  PubMed  Google Scholar 

  7. Gullung G, Woodall J, Tucci M, et al. Platelet-rich plasma effects on degenerative disc disease: analysis of histology and imaging in an animal model. Evid Based Spine Care J. 2011;2:13–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tuakli-Wosornu YA, Terry A, Boachie-Adjei K, Harrison JR, et al. Lumbar intradiscal platelet-rich plasma (PRP) injections: a prospective randomized double-blind study. PM and R. 2016;8(1):1–10.

    Article  PubMed  Google Scholar 

  9. Harrison JR, Herzog RJ, Lutz GE. Increased Nuclear T2 signal intensity following Intradiscal platelet rich plasma: a case report. Submitted to PM&R.

    Google Scholar 

  10. Levi D, Horn S, Tyszko S, et al. Intradiscal platelet-rich plasma injection for chronic discogenic low back pain: preliminary results from a prospective trial. Pain Med. 2015;0:1–13.

    Google Scholar 

  11. Amer. Acad. Ortho. Med. Annual Meeting. Evaluating the Safety and Efficacy of Fibrin to Treat Multi-level Chronic Discogenic Low Back Pain and associated Radiculopathy. 2020. Pending Publication, Spine Jour. 2021.

    Google Scholar 

  12. Vadala G, Sowa G, Hubert M, et al. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J Tissue Eng Regen Med. 2012;6(5):348–55.

    Article  CAS  PubMed  Google Scholar 

  13. Li YY, Diao HJ, Chik TK, et al. Delivering mesenchymal stem cells in collagen microsphere carriers to rabbit degenerative disc: reduced risk of osteophyte formation. Tissue Eng. Part A. 2014;20(9–10).

    Google Scholar 

  14. Ahmed TA, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev. 2008;14(2):199.

    Article  CAS  PubMed  Google Scholar 

  15. Colombini A, Ceriani C, Banfi G, et al. Fibrin in intervertebral disc tissue engineering. Tissue Eng Part B Rev. 2014;20(6):713–21.

    Article  CAS  PubMed  Google Scholar 

  16. Schek RM, Michalek AJ, Iatridis JC. Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair. Eur Cell Mater. 2011;5:275.

    Google Scholar 

  17. Jansen M, Brant-Zawadzki M, Timo K, et al. Magnetic-resonance imaging of the spine in people without back pain. N Engl J Med. 1994;331:69–73.

    Article  Google Scholar 

  18. Grubb SA, Lipscomb HJ, Guilford WB. The relative value of lumbar roentgenograms, metrizamide myelography, and discography in the assessment of patients with chronic low-back-syndrome. Spine. 1987;12:282–6.

    Article  CAS  PubMed  Google Scholar 

  19. Gaensler E. Nondegenerative diseases of the spine. In: Brant W, editor. Fundamentals of diagnostic radiology. Baltimore: Williams and Wilkins; 1999. p. 233–380.

    Google Scholar 

  20. Jarvik JG, Deyo RA. Diagnostic evaluation of low Back pain with emphasis on imaging. Ann Intern Med. 2002;137:586–97.

    Article  PubMed  Google Scholar 

  21. YoshidaH FA, TamaiK, et al. Diagnosis of symptomatic disc by magnetic resonance imaging: T2-weighted and gadolinium-DTPA-enhanced T1 weighted magnetic resonance imaging. J Spinal Disord Tech. 2002;15:193–8.

    Article  Google Scholar 

  22. Toyone T, Takahashi K, Kitahara H, et al. Vertebral bone-marrow changes in degenerative lumbar disc disease: an MRI study of 74 patients with low back pain. J Bone Joint Surg Br. 1994;76:757–64.

    Article  CAS  PubMed  Google Scholar 

  23. Weishaupt D, Zanetti M, Hodler J, et al. Painful lumbar disk derangement: relevance of endplate abnormalities at MR imaging. Radiology. 2001;218:420–7.

    Article  CAS  PubMed  Google Scholar 

  24. Sandhu HS, Sanchez-Caso LP, Parvataneni HK, et al. Association between findings of provocative discography and vertebral endplate signal changes as seen on MRI. J Spinal Disord. 2000;13:438–43.

    Google Scholar 

  25. Braithwaite I, White J, Saifuddin A, et al. Vertebral end-plate (Modic) changes on lumbar spine MRI: correlation with pain reproduction at discography. Eur Spine J. 1998;7:363–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vanharanta H, Sachs BL, Spivey MA, et al. The relationship of pain provocation to lumbar disc deterioration as seen by CT/discography. Spine. 1987;12:295–8.

    Article  CAS  PubMed  Google Scholar 

  27. Crock HV. Internal disc disruption: a challenge to disc prolapse. Spine. 1986;11:650–3.

    Article  CAS  PubMed  Google Scholar 

  28. Moneta GB, Videman T, Kaivanto K, et al. Reported pain during lumbar discography as a function of annular ruptures and disc degeneration. A re-analysis of 833 Discograms. Spine. 1994;1994(17):1968–74.

    Article  Google Scholar 

  29. Collis JS, Gardner WJ. Lumbar discography—an analysis of 1,000 cases. J Neurosurg, 1962;19:452–461. 30. Erlacher PR: Nucleography. J Bone Joint Surg. 1952;34B:204–10.

    Google Scholar 

  30. Hsien-Wen S, Yu-Min C, Hsing-T’Ang K, et al. Lumbar discography: an experimental and clinical study. Chin Med J. 1964;83:521–30.

    Google Scholar 

  31. Nordlander S, Salen EF, Unander-Scharin L. Discography in low back pain and sciatica. Acta Orthop Scandinav. 1958;28:90–102.

    Article  CAS  Google Scholar 

  32. Walk L. Clinical significance of discography. Acta Radiol. 1956;46:36–7.

    Article  CAS  PubMed  Google Scholar 

  33. Lindblom K. Diagnostic disc puncture of intervertebral disks in sciatica. Acta Orthop Scandinav. 1948;17:231–9.

    Article  CAS  Google Scholar 

  34. Lindblom K. Technique and results in myelography and disc puncture. Acta Radiol. 1950;34:321–30.

    Article  CAS  PubMed  Google Scholar 

  35. Hirsch C. An attempt to diagnose the level of a disc lesion clinically by disc puncture. Acta Orthop Scandinav. 1949;18:132–40.

    Article  Google Scholar 

  36. Lindblom K. Technique and results of diagnostic disc puncture and injection (discography) in the lumbar region. Acta Orthop Scandinav. 1951;20:315–26.

    Article  CAS  Google Scholar 

  37. Lindblom K. Discography of dissecting transosseous ruptures of intervertebral discs in the lumbar region. Acta Radiologica. 1951. 36:13–16; Friedman J, Goldner MZ. Discography in evaluation of lumbar disc. Radiology. 1955;65:653–62.

    Google Scholar 

  38. Feinberg SB. The place of discography in radiology in 2,320 cases. AJR. 1964;92:1275–81.

    CAS  Google Scholar 

  39. Butt WP. Lumbar discography. J Can Assoc Radiol. 1963;14:172–81.

    CAS  PubMed  Google Scholar 

  40. Gardner WJ, Wise RE, Hughes CR, et al. X-ray visualization of the intervertebral disk with a consideration of the morbidity of disk puncture. Arch Surg. 1952;64:355–64; Braithwaite I, White J, Saifuddin A, et al. Vertebral end-plate (Modic) changes on lumbar spine MRI: correlation with pain reproduction at discography. Eur Spine J. 1998;7:363–8.

    Google Scholar 

  41. Keck C. Discography: technique and interpretation. AMA Arch Surg. 1960;80:580–6.

    Article  CAS  PubMed  Google Scholar 

  42. Wilson DH, MacCarty WC. Discography: its role in the diagnosis of lumbar disc protrusion. J Neurosurg.

    Google Scholar 

  43. Holt EP. The question of lumbar diskography. J Bone Int Surg. 1968;50A:720–5.

    Article  Google Scholar 

  44. Pauza KJ, Howell S, Dreyfuss, et al. NASS OUTSTANDING PAPER. Prospective double blind, placebo controlled study evaluating the efficacy of intradiscal electrothermal therapy for the treatment of chronic discogenic low back pain. Spine J. 2004;4(1):27–35.

    Article  PubMed  Google Scholar 

  45. Bogduk N, editor. Practice Guidelines for spinal diagnostic and treatment procedures. ISIS; 2004.

    Google Scholar 

  46. Carragee EJ, Tanner CM, Yang B, et al. False-positive findings on lumbar discography. Reliability of subjective concordance assessment during provocative disc injection. Spine. 1999;24(23):2542–7.

    Article  CAS  PubMed  Google Scholar 

  47. Carragee EJ, Tanner CM, Khurana S, et al. The rates of false-positive lumbar discography in select patients without low back symptoms. Spine. 2000;25:1373–81.

    Article  CAS  PubMed  Google Scholar 

  48. Carragee EJ, Alamin TF, Miller J, et al. Provocative discography in volunteer subjects with mild persistent low back pain. Spine J. 2002;2:25–34.

    Article  PubMed  Google Scholar 

  49. Carragee EJ, Chen Y, Tanner CM, et al. Can discography cause long-term back symptoms in previously asymptomatic subjects? Spine. 2000;25:1803–8.

    Article  CAS  PubMed  Google Scholar 

  50. Carragee EJ, Chen Y, Tanner CM, et al. Provocative discography in patients after limited lumbar discectomy: a controlled, randomized study of pain response in symptomatic and asymptomatic subjects. Spine. 2000;25:3065–71.

    Article  CAS  PubMed  Google Scholar 

  51. Derby R, Kim BJ, Lee SH, et al. Comparison of discographic findings in asymptomatic subject discs and the negative discs of chronic LBP patients: can discography distinguish asymptomatic discs among morphologically abnormal discs? Spine J. 2005;5:389–94.

    Article  PubMed  Google Scholar 

  52. McCutcheon ME. CT scanning of lumbar discography: a useful diagnostic adjunct. Spine. 1986;11:257–9.

    Article  CAS  PubMed  Google Scholar 

  53. Sachs BL, Vanharanta H, Spivey MA, Guyer RD, Videman T, Rashbaum RF, Johnson RG, Hochschuler SH, Mooney V. Dallas discogram description: a new classification of CT/discography in lowback disorders. Spine. 1987;12:287–94.

    Article  CAS  PubMed  Google Scholar 

  54. Aprill C, Bogduk N. High intensity zone: a diagnostic sign of painful lumbar disc on magnetic resonance imaging. Brit J Radiol. 1992;65:361–9.

    Article  CAS  PubMed  Google Scholar 

  55. Vanharanta H, Sachs BL, Spivey MA, et al. The relationship of pain provocation to lumbar disc deterioration as seen by CT/discography. Spine. 1987;12:295298.

    Article  Google Scholar 

  56. Moneta GB, Videman T, Kaivanto K, et al. Reported pain during lumbar discography as a function of annular ruptures and disc degeneration. A re-analysis of 833 discograms. Spine. 1994;17:1968–74.

    Article  Google Scholar 

  57. Polk HC, Christmas AB. Prophylactic antibiotics in surgery and surgical wound infections. Am Surg. 2000;80:105–11.

    Google Scholar 

  58. International Spine Intervention Society (ISIS), Bogduk B. Proposed discography standards. ISIS Newsletter, Vol. 2(1). Daly City, California: International Spinal Injection Society; 1994. p. 10–3.

    Google Scholar 

  59. Bogduk N, Aprill C, Derby R. Discography. In: White AH, editor. Spine care, Vol. 1. St Louis: Mosby; 1995. p. 219–38.

    Google Scholar 

  60. Bogduk N, Chr PK. International spine intervention society practice guidelines for spinal diagnostic and treatment procedures. Oxford Blackwell Science; 2003.

    Google Scholar 

  61. Fraser RD, Osti AL, Vernon-Roberts B. Discitis after discography. J Bone Joint Surg. 1987;69B:26–35.

    Article  Google Scholar 

  62. Alamin T. The functional anesthetic discogram: comparison of the results of a novel technique to that of provocative discography in a group of patients with chronic low back pain. International Society for the Study of the Lumbar Spine. Abstracts. June, 2006:52–53.

    Google Scholar 

  63. Ohtori S, Kinoshita T, Yamashita M, et al. Results of surgery for discogenic low back pain: a randomized study using discography versus discoblock for diagnosis. Spine. 2009;34(13):1345–8.

    Article  PubMed  Google Scholar 

  64. Ren J, Zhang Y, Chee, et al. Effects of local anesthetic and nonionic contrast agents on bovine intervertebral disc cells cultured in alginate. Abstract. SAS. 2010.

    Google Scholar 

  65. Derby R, Lee SH, Kim BJ, et al. Pressure-controlled lumbar discography volunteers without low back symptoms. Pain Med. 2005;6:213–21.

    Article  PubMed  Google Scholar 

  66. Derby R, Howard MW, Grant JM, et al. The ability of pressure-controlled discography to predict surgical outcomes. Spine. 1999;24:346–71.

    Article  Google Scholar 

  67. DePalma M, Lee J, Peterson L, et al. Are outer annular fissures stimulated during discography the source of discogenic low-back pain? An analysis of analgesic discography data. Pain Med. 2009;10:3.

    Article  Google Scholar 

  68. Buser Z, Kuelling F, Liu J, et al. Biological and biomechanical effects of fibrin injection into porcine intervertebral discs. Spine. 2011;36(18).

    Google Scholar 

  69. Yin W, Pauza K, Olan W, et al. Symptomatic lumbar internal disc disruption: results of a prospective multicenter pilot study with 24 month follow-up. Pain Med. 2014;15(1).

    Google Scholar 

  70. Pauza K, Yin W, Olan W, et al. Biostat Biologix intradiscal fibrin sealant used for the treatment of chronic low back pain caused by lumbar internal disc disruption: results of a 12 month, prospective multi-center pilot study. Surgical Arthrodesis Society. Annuall Meeting. 2010.

    Google Scholar 

  71. Pauza K, Wright C, Fairbourn A. Treatment of annular tears and “leaky disc syndrome”. Techn Reg Anesth Pain Manag. (1–2):45–9.

    Google Scholar 

  72. Pauza K. Intradiscal biologics. In: Gebhart GF, Schmidt RF, editors. Encyclopedia of pain. Philadelpia; 2013.

    Google Scholar 

  73. García-Cosamalón J, del Valle ME, Calavia MG, et al. Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat. 2010;217(1):1–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Yoshizawa H, O’Brien JP, Thomas-Smith W, et al. The neuropathology of intervertebral discs removed for low-back pain. J Pathol. 1980;132:95–104.

    Article  CAS  PubMed  Google Scholar 

  75. Korkala O, Gronblad M, Liesi P, et al. Immunohistochemical demonstration of nociceptors in the ligamentous structures of the lumbar spine. Spine. 1985;10:156–7.

    Article  CAS  PubMed  Google Scholar 

  76. Bogduk N, Tynan W, Wilson S. The nerve supply to the human lumbar intervertebral discs. J Anat. 1981;132:39–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bogduk N. The innervation of the lumbar spine. Spine. 1983;8:286–93.

    Article  CAS  PubMed  Google Scholar 

  78. Groen GJ, Baljet B, Drukker J. Nerves and nerve plexuses of the human vertebral column. Am J Anat. 1990;188:282–96.

    Article  CAS  PubMed  Google Scholar 

  79. Malinsky J. The ontogenetic development of nerve terminations in the intervertebral discs of man. Acta Anat. 1959;38:96–113.

    Article  CAS  PubMed  Google Scholar 

  80. Konttinen YT, Gronblad M, Antti-Poika I, et al. Neuroimmunohistochemical analysis of peridiscal nociceptive neural elements. Spine. 1990;15:383–6.

    Article  CAS  PubMed  Google Scholar 

  81. Peng B, Wu W, Li Z, Guo J, Wang X. Chemical radiculitis. Pain. 2007;127:11–6.

    Article  CAS  PubMed  Google Scholar 

  82. Olmarker K, Rydevik B, Nordborg C. Autologous nucleus pulposus induces neurophysiologic and histologic changes in porcine cauda equina nerve roots. Spine. 1993;18(11):1425–32.

    Article  CAS  PubMed  Google Scholar 

  83. Saal JS. The role of inflammation in lumbar pain. Spine. 1995;20(16):1821–7.

    Article  CAS  PubMed  Google Scholar 

  84. Bobechko W, Hirsch C. Autoimmune response to nucleus pulposus in rabbit. J Bone Joint Surg. 1965;47B:3; Marshall L, Trethewie E, Curtain C. Chemical radiculitis. A clinical, physiological, and immunological study. Clin Ortho Relat Res, 1977. 11.129.

    Google Scholar 

  85. Ohtori S, Inoue G, Ito T. Tumor necrosis factor-immunoreactive cells and PGP 9.5-immunoreactive nerve fibers in vertebral endplates of patients with discogenic low.

    Google Scholar 

  86. Chou R, Hashimoto R, Friedly J, et al. Epidural corticosteroid injections for radiculopathy and spinal stenosis: A systematic review and meta-analysis. Ann Intern Med. 2015;163(5):373–81.

    Article  PubMed  Google Scholar 

  87. Ekman P, Möller H, Shalabi A, et al. A prospective randomised study on the long-term effect of lumbar fusion on adjacent disc degeneration. Eur Spine J. 2009;18(8):1175–86.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Harrop J, Youssef J, Maltenfort M, et al. Lumbar adjacent segment degeneration and disease after arthrodesis and total disc arthroplasty. Spine. 2008;33(15):1701–7.

    Article  PubMed  Google Scholar 

  89. Chen C, Cheng C, Liu C, et al. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys. 2001;23(7):483–91.

    Article  CAS  PubMed  Google Scholar 

  90. Pezowicz C, Schechtman H, Robertson P, et al. Mechanisms of anular failure resulting from excessive intradiscal pressure: a microstructural-micromechanical investigation. Spine. 2006;31(25):2891–903.

    Article  PubMed  Google Scholar 

  91. Throckmorton T, Hilibrand A, Mencio G, et al. The impact of adjacent level disc degeneration on health status outcomes following lumbar fusion. Spine. 2003;28(22):2546–50.

    Article  PubMed  Google Scholar 

  92. Adams M, Freeman B, Morrison H, et al. Mechanical initiation of intervertebral disc degeneration. Spine. 2000;25(13):1625–36.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang C, Berven S, Fortin M, et al. Adjacent segment degeneration versus disease after lumbar spine fusion for degenerative pathology: a systematic review with meta-analysis of the literature. Clin Spine Surg. 2016;29(1):21–9.

    Article  PubMed  Google Scholar 

  94. Lee C. Accelerated degeneration of the segment adjacent to the lumbar fusion. Spine. 1988;13(3):375–7.

    Article  CAS  PubMed  Google Scholar 

  95. Lee C. Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine. 1988;3(13):375–7.

    Article  Google Scholar 

  96. Sheng C, Cheng-Kung C-L, et al. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phy. 2001;23(7):483–91.

    Google Scholar 

  97. O’Connell G, Malhotra N, Vresilovic E, Elliott D. The effect of discectomy and the dependence on degeneration of human intervertebral disc strain in axial compression. Spine. 2011;72(2):181–204.

    Google Scholar 

  98. Schroeder J, Dettori J, Brodt E, et al. Disc degeneration after disc herniation: are we accelerating the process? Evidence Based Spine Care J. 2012;3(4):33–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pauza, K.J., Moradian, M., Lutz, G. (2023). Intra-annular Fibrin Discseel®. In: Hunter, C.W., Davis, T.T., DePalma, M.J. (eds) Regenerative Medicine . Springer, Cham. https://doi.org/10.1007/978-3-030-75517-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75517-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75516-4

  • Online ISBN: 978-3-030-75517-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics