Skip to main content

Adipose-Derived Stromal Stem Cells

  • Chapter
  • First Online:
Regenerative Medicine
  • 834 Accesses

Abstract

This chapter provides the reader a comprehensive understanding of the potential clinical value of utilizing adipose-derived stromal stem cell therapy. Complex evaluation of physical characterization and biochemical mechanistic properties of adipose tissue is explored. The potential clinical applications including appropriate indications and contraindications to the use of adipose stem cell therapy are included. In addition, the current regulatory landscape regarding the use of this tissue is discussed in detail. Appropriate patient selection, step-by-step procedural descriptions and explanations, and useful clinical pearls and pitfalls make this chapter a must-read for anyone considering the use of adipose stromal-derived stem cell therapy in their practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murphy M, Moncivias K, Caplan AI. Mesenchymal stem cells: environmentally responsive for regenerative medicine. Exp Mol Med. 2013;45:e54. https://doi.org/10.1038/emm.2013.94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li H, Zimmerlin L, Marra KG, Donnenberg VS, Donnenberg AD, Rubin JP. Adipogenic potential of adipose stem cell subpopulations. Plast Reconstr Surg. 2011;128(3):663–72. Epub 2011/05/17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Han J, Koh YJ, Moon HR, Ryoo HG, Cho CH, Kim I, Koh GY. Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood. 2004;115(5):957–64.

    Article  Google Scholar 

  4. Bourin P, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15:641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasgualini R, Johnstone BH, March KL. A population of CD-34 positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008;102(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  6. Gimble, et al. Adipose derived stem cells for regenerative medicine. Circ Res. 2007;100:1249–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641–50.

    Article  CAS  PubMed  Google Scholar 

  8. Caplan A, Mesenchymal DJE. Stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.

    Article  CAS  PubMed  Google Scholar 

  9. Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 2008;11(3):343–53.

    PubMed  Google Scholar 

  10. Emadedin M, Aghdami N, Taghiyar L, Fazeli R, Moghadasali R, Jahangir S, Farjad R, BaghabanEslaminejad M. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iranian Med. 2012;15(7):422–8.

    Google Scholar 

  11. Jo CH, Yg L, Shin WH, Kim H, Chai JW, Jeong EC, Kim EC, Kim JE, Shim H, Shin JS, Shin IS, Ra JC, Oh S, Yoon KS. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32(5):1254–66.

    Article  CAS  PubMed  Google Scholar 

  12. Longo UG, Papapietro N, Petrillo S, Franceschetti E, Maffulli N, Denaro V. Mesenchymal stem cell for prevention and management of intervertebral disc degeneration. Stem Cell Int. 2012; https://doi.org/10.1155/2012/921053.

  13. Sivakamansundari V, Lufkin T. Stemming the degeneration: IVD stem cells and regenerative therapy for degenerative disc disease. Adv Stem Cells. 2013; https://doi.org/10.5171/2013.724.

  14. Hohaus C, Ganey TM, Minkus Y, Meisel HJ. Cell transplantation in lumbar spine disc degeneration disease. Eur Spine J. 2008;17(suppl 4):492.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hiyama A, Mochida J, Iwashina T, Omi H, Watanabe T, Serigano K, Tamura F, Sakai D. Tranplantation of Mesenchymal stem cells in a canine disc degeneration model. J Orthop Res. 2008;26:589.

    Article  CAS  PubMed  Google Scholar 

  16. Henriksson HB, et al. Transplantation of human mesenchymal stem cells into intervertebral discs in a xenogeneic porcine model. Spine. 2009;34:141.

    Article  PubMed  Google Scholar 

  17. Sakai D, et al. Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine. 2005;30:2379.

    Article  PubMed  Google Scholar 

  18. Orozco L, et al. Intervertebral disc repair by autologous mesenchymal bone marrow cells: 2 pilot study. Transplantation. 2011;92(7):822–8.

    Article  PubMed  Google Scholar 

  19. Pettine KA, Murphy MB, Suzuki RK, Sand TT. Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells. 2015;33(1):146–56.

    Article  CAS  PubMed  Google Scholar 

  20. Mizuno H, Tobita M, Uysal AC. Concise review: adipose derived stem cells as a novel tool for future regenerative medicine. Stem Cells. 2012;30(5):804–10.

    Article  CAS  PubMed  Google Scholar 

  21. Folgiero V, Migliano E, Tedesco M, Iacovelli S, Bon G, Torre ML, Sacchi A, Marazzi M, Falcioni R. Purification and characterization of adipose derived stem cells from patients with lipoaspirate transplantation. Cell Transplant. 2010;19(10):1225–35.

    Article  PubMed  Google Scholar 

  22. Bailey AM, Kapur S, Katz AJ. Characterization of adipose derived stem cells: an update. Curr Stem Cell Res Ther. 2010;5(2):95–102.

    Article  CAS  PubMed  Google Scholar 

  23. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2012;9:11–5.

    Article  Google Scholar 

  24. FDA Draft Guidance (December, 2014). Minimal manipulation of human cells, tissues and cellular and tissue-based products.

    Google Scholar 

  25. FDA Draft Guidance for Industry (October, 2014). Same surgical procedure exemption under 21 CFR 1271.15(b): Questions and Answers Regarding the Scope of the Exception. http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Tissue/ucm419911.htm.

  26. FDA Draft Guidance for Industry and Drug Administration Staff (Nov 2017/Corrected Dec 2017). Regulatory considerations for human cells, tissue, and tissue based products minimal manipulation and homologous use. U.S. Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research.

    Google Scholar 

  27. FDA Draft Guidance for Industry (Nov 2017). Evaluation of devices used with regenerative medicine advanced therapies. U.S. Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research.

    Google Scholar 

  28. FDA Draft Guidance for Industry (Nov 2017). Expedited programs for regenerative medicine therapies for serious conditions. U.S. Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research.

    Google Scholar 

  29. 21st Century Cures Act. US H.R. 6 114th congress, 2016. https://www.fda.gov/RegulatoryInformation/LawsEnforcedbyFDA/SignificantAmendmentstotheFDCAct/21stCenturyCuresAct/

  30. Buschmann J, Gao S, Harter L, et al. Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions. Cytotherapy. 2013;15(9):1098–105.

    Article  CAS  PubMed  Google Scholar 

  31. Jurgens WJ, Oedayrajsingh-Varma MJ, Helder MN, et al. Effect of tissue-harvest site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res. 2008;332:415–26.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vilaboa SD, Navarro-Palou M, Llull R. Age influence on stromal vascular fraction cell yield obtained from human lipoaspirates. Cytotherapy. 2014;12:1092–7.

    Article  Google Scholar 

  33. Hernigou P, Homma Y, Flouzat-Lachaniette CH, Poingnard A, Chevailler N, Rouard H. Cancer risk is not increased in patients treated for orthopedic diseases with autologous bone marrow cell concentrate. J Bone Joint Surg Am. 2013;95:2215–21.

    Article  PubMed  Google Scholar 

  34. Yshiya S, Dhawan A. Cartilage repair techniques in the knee: stem cell therapies. Curr Rev Musculoskelet Med. 2015:457–66.

    Google Scholar 

  35. Alaseem AM, Madiraju P, Aldebeyan SA, Noorwali, H, Antoniou J, Mwale F. Naproxen induces type X collagen expression in human bone marrow derived mesenchymal stem cells through up-regulation of 5-Lipoxygenase. Tissue Eng: Part A. 2015;21(1 and 2).

    Google Scholar 

  36. Fredriksson M, Li Y, Stalman A, Haldosen LA, Fellander-Tsai L. Doclofenac and triamcinolone acetonide impair tenocytic differentiation and promote adipocytic differentiation of mesenchymal stem cells. J Orthopaed Surg Res. 2013;8:30.

    Article  Google Scholar 

  37. Halme DG, Kessler DA. FDA regulation of stem cell based therapies. N Engl J Med. 2006;355:1730–5.

    Article  CAS  PubMed  Google Scholar 

  38. Fournier PF. Reduction syringe lipo contouring. Dermatol Clin. 1990;8:539.

    Article  CAS  PubMed  Google Scholar 

  39. Hunsted JP. Tumescent and syringe liposculpture: a logical partnership. Aesth Plast Surg. 1995;19:321–33.

    Article  Google Scholar 

  40. Housman TS, et al. The safety of liposuction: results of national survey. Dermatol Surg. 2002;08:971–8.

    Google Scholar 

  41. Klein J. Tumescent technique chronicles. Dermatol Surg. 1995;21:449–57.

    CAS  PubMed  Google Scholar 

  42. Aronmitz JA, Lockhart RA, Hakakian CS. Mechanical verses enzymatic isolation of stromal vascular fraction cells from adipose tissue. Springerplus. 2005;4:713.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brown, L.L. (2023). Adipose-Derived Stromal Stem Cells. In: Hunter, C.W., Davis, T.T., DePalma, M.J. (eds) Regenerative Medicine . Springer, Cham. https://doi.org/10.1007/978-3-030-75517-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75517-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75516-4

  • Online ISBN: 978-3-030-75517-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics