Skip to main content

Compactness, or Lack Thereof, for the Harmonic Double Layer

  • Chapter
  • First Online:
From Operator Theory to Orthogonal Polynomials, Combinatorics, and Number Theory

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 285))

  • 607 Accesses

Abstract

Ahlfors regular domains which are infinitesimally flat, in a scale-invariant fashion, constitute the most general geometric context in which the harmonic double layer potential as well as other similar singular integral operators are compact in the framework of Lebesgue spaces. We review recent progress in this direction and, working with a drop-shaped domain, we give a direct, self-contained proof of the fact that the harmonic double layer potential fails to be compact on Lebesgue spaces in the presence of a single corner (or conical) singularity.

The authors are delighted to dedicate this article to Lance Littlejohn, whose warm friendship they much value and cherish, on the occasion of his 70-th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)

    MATH  Google Scholar 

  2. C. Bennett, R. Sharpley, Interpolation of operators, in Pure and Applied Mathematics, vol. 129 (Academic Press, New York, 1988)

    MATH  Google Scholar 

  3. Yu.D. Burago, V.G. Maz’ya, Potential theory and function theory for irregular regions, in Translated from Russian, Seminars in Mathematics, V.A. Steklov Mathematical Institute, Leningrad, vol. 3, (Consultants Bureau. New York, 1969)

    Google Scholar 

  4. A.P. Calderón, Cauchy integrals on Lipschitz curves and related operators. Proc. Nat. Acad. Sci. USA. 74(4), 1324–1327 (1977)

    Article  MathSciNet  Google Scholar 

  5. R. Coifman, A. McIntosh, Y. Meyer, L’intégrale de Cauchy definit un opérateur borné sur L 2 pour les courbes lipschitziennes. Ann. Math. 116, 361–388 (1982)

    Article  MathSciNet  Google Scholar 

  6. D. Colton, R. Kress, Inverse acoustic and electromagnetic scattering theory, in Applied Mathematical Sciences, vol. 93 (Springer, Berlin, 1992)

    Book  Google Scholar 

  7. G. David, Opérateurs d’intégrale singulière sur les surfaces régulières. Ann. Scient. Ecole Norm. Sup. 21, 225–258 (1988)

    Article  Google Scholar 

  8. G. David, Wavelets and singular integrals on curves and surfaces, in Lecture Notes in Mathematics, vol. 1465 (Springer, Berlin, 1991)

    Book  Google Scholar 

  9. G. David, D. Jerison, Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals. Indiana Univ. Math. J. 39(3), 831–845 (1990)

    Article  MathSciNet  Google Scholar 

  10. G. David, S.W. Semmes, Singular integrals and rectifiable sets in \({\mathbb {R}}^n\): Beyond lipschitz graphs. Astérisque 193, 13 (1991)

    Google Scholar 

  11. G. David, S.W. Semmes, Analysis of and on uniformly rectifiable sets, in Mathematical Surveys and Monographs (AMS Series, New York, 1993)

    MATH  Google Scholar 

  12. L. Escauriaza, E.B. Fabes, G. Verchota, On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries. Proc. Am. Math. Soc. 115, 1069–1076 (1992)

    Article  MathSciNet  Google Scholar 

  13. L.C. Evans, R.F. Gariepy, Measure theory and fine properties of functions, in Studies in Advanced Mathematics (CRC Press, Boca Raton, 1992)

    MATH  Google Scholar 

  14. E.B. Fabes, M. Jodeit Jr, N.M. Rivière, Potential techniques for boundary value problems on C 1-domains. Acta Math. 141(3–4), 165–186 (1978)

    Article  MathSciNet  Google Scholar 

  15. F. Gesztesy, M. Mitrea, Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, in Proceedings of Symposia in Pure Mathematics, vol. 79 (American Mathematical Society, New York, 2008)

    MATH  Google Scholar 

  16. S. Hofmann, M. Mitrea, M. Taylor, Singular Integrals and Elliptic Boundary Problems on Regular Semmes-Kenig-Toro Domains. Int. Math. Res. Not. IMRN. 14, 2567–2865 (2010)

    MathSciNet  MATH  Google Scholar 

  17. D.S. Jerison, C.E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46(1), 80–147 (1982)

    Article  MathSciNet  Google Scholar 

  18. J. KrálJ., Integral operators in potential theory, in Lecture Notes in Mathematics, vol. 823 (Springer, Berlin, 1980)

    Google Scholar 

  19. E. Marmolejo-Olea, D. Mitrea, I. Mitrea, M. Mitrea, Radiation conditions and integral representations for Clifford algebra-valued null-solutions of the Helmholtz operator. J. Math. Sci. 231(3), 367–472 (2018)

    Article  MathSciNet  Google Scholar 

  20. V.G. Maz’ya, Boundary integral equations, in Analysis, IV, Encyclopaedia Mathematical Science, vol. 27, ed. by V.G. Maz’ya, S.M. Nikol’skii (Springer, Berlin, 1991), pp. 127–222

    Google Scholar 

  21. I. Mitrea, On the spectra of elastostatic and hydrostatic layer potentials on curvilinear polygons. J. Fourier Anal. Appl. 8(5), 443–487 (2002)

    Article  MathSciNet  Google Scholar 

  22. D. Mitrea, I. Mitrea, M. Mitrea, M. Taylor, The Hodge-Laplacian: boundary value problems on Riemannian manifolds. Studies Math. 64, De Gruyter (2016)

    Google Scholar 

  23. I. Mitrea, M. Mitrea, M. Taylor, Riemann-Hilbert Problems, Cauchy Integrals, and Toeplitz Operators on Uniformly Rectifiable Domains. Book manuscript, in preparation (2017)

    Google Scholar 

  24. D. Mitrea, I. Mitrea, M. Mitrea, A Sharp Divergence Theorem with Non-Tangential Pointwise Traces and Applications to Singular Integrals and Boundary Problems. Book manuscript (2020)

    Google Scholar 

  25. F. Nazarov, X. Tolsa, A. Volberg, On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1. Acta Math. 213, 237–321 (2014)

    Article  MathSciNet  Google Scholar 

  26. J. Plemelj, Potentialtheoretische Untersuchungen, in Preisschriften der FĂĽrstlich Jablonowskischen Gesellschaft zu Leipzig. (Teubner, Leipzig, 1911)

    Google Scholar 

  27. D. Sarason, Functions of vanishing mean oscillation. Trans. Am. Math. Soc. 207, 391–405 (1975)

    Article  MathSciNet  Google Scholar 

  28. S.W. Semmes, A criterion for the boundedness of singular integrals on hypersurfaces. Trans. Am. Math. Soc. 311(2), 501–513 (1989)

    Article  MathSciNet  Google Scholar 

  29. V.Yu. Shelepov, On the index of an integral operator of the potential type in the space L p. Dokl. Akad. Nauk SSSR 186(6), 1266–1268, (1969). (English translation: Sov. Math. Dokl. 10/A, 754–757)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge partial support from the Simons Foundation (through grants # 426669, # 637481), as well as NSF (grant # 1900938).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dorina Mitrea or Marius Mitrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitrea, D., Mitrea, I., Mitrea, M. (2021). Compactness, or Lack Thereof, for the Harmonic Double Layer. In: Gesztesy, F., Martinez-Finkelshtein, A. (eds) From Operator Theory to Orthogonal Polynomials, Combinatorics, and Number Theory . Operator Theory: Advances and Applications, vol 285. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-75425-9_17

Download citation

Publish with us

Policies and ethics