Skip to main content

Experimental and Numerical Investigations on the Development and Stability of Residual Stresses Arising from Hot Forming Processes

  • Conference paper
  • First Online:
Forming the Future

Abstract

Residual stresses are an important issue as they affect both the manufacturing process as well as the performance of the final parts. Taking the whole process chain of hot forming into account, the integrated heat treatment provided by a defined temperature profile during cooling of the parts offers a great potential for the targeted adjustment of the desired residual stress state. The aim of this work is the investigation of technological reproducibility and stability of residual stresses arising from the thermomechanical forming process. For this purpose, a long-term study of residual stresses on hot-formed components is conducted. In order to develop finite element models for hot forming, a comprehensive thermomechanical material characterisation with special focus on phase transformation effects is performed. The numerical model is validated by means of a comparison between residual stress states determined with X-ray diffraction on experimentally processed components and predicted residual stresses from the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verlinden B, Driver J, Samajdar J, Doherty R (2007) Thermo-mechanical processing of metallic materials. Elsevier Science 11

    Google Scholar 

  2. Brands D, Chugreev A, Kock C, Niekamp R, Scheunemann L, Uebing S, Behrens BA, Schröder J (2018) On the analysis of microstructural residual stresses in hot bulk forming parts under specific cooling. In: Proceedings in applied mathematics and mechanics

    Google Scholar 

  3. McClung RC (2007) A literature survey on the stability and significance of residual stresses during fatigue. Fatigue Fract Eng Mater Struct Nr 30:173–205

    Article  Google Scholar 

  4. Zhuang W, Wicks B (2003) Mechanical surface treatment technologies for gas turbine engine components. J Eng Gas Turbines Power

    Google Scholar 

  5. Eigenmann B, Schulze V, Vöhringer O (1994) Surface residual stress relaxation in steels by thermal or mechanical treatment. In: Proceedings of the Fourth international conference on residual stresses, society of experimental mechanics, pp 598–607

    Google Scholar 

  6. Cammett JT, Sauer CA, Arnold TE (1993) Observations of shot peening residual stresses in 17 Cr - 7 Ni Austenitic stainless steel and their redistribution via mechan. In: The Fifth international conference on shot peening: ICSP5, pp 282–289

    Google Scholar 

  7. Wick A, Schulze V, Vöhringer O (2000) Effects of warm peening on fatigue life and relaxation behaviour of residual stresses in AISI 4140 steel. Mater Sci Eng B 191–197

    Google Scholar 

  8. Iida K, Hirose Y (1999) The residual stress distribution in shot peened carburized steel under fatigue. In: Proceedings of the 7th international conference on shot peening, pp 96–101

    Google Scholar 

  9. Clark DA, Johnson WS (2003) Temperature effects on fatigue performance of cold expanded holes in 7050-T7451 aluminum alloy. Int. J. Fatigue 159–165

    Google Scholar 

  10. Behrens BA, Bouguecha A, Vucetic M, Chugreev A (2016) Advanced wear simulation for bulk metal forming processes. MATEC Web of Conferences

    Google Scholar 

  11. Behrens BA, Bouguecha A, Bonk C, Chugreev A (2017) Experimental investigations on the transformation induced plasticity in a high tensile steel under varying thermo-mechanical loading. Comput. Methods Mater Sci 36–43

    Google Scholar 

  12. Behrens BA, Olle P (2007) Consideration of phase transformations in numerical simulation of press hardening. Steel Res Int 784–790

    Google Scholar 

  13. Denis S, Gautier E, Simon A, Beck G (1985) Stress-phase-transformation interactions—basic principles, modelling and calculation of internal stresses. Mater Sci Technol 805–814

    Google Scholar 

  14. Mitter W (1987) Umwandlungsplastizität und ihre Berücksichtigung bei der Berechnung von Eigenspannungen Materialkundlich-Technische Reihe

    Google Scholar 

  15. Behrens BA, Chugreeva A, Chugreev A (2018) FE-simulation of hot forging with an integrated heat treatment with the objective of residual stress prediction. AIP Conf Proc

    Google Scholar 

  16. DIN EN ISO 683–17 (2014) Heat-treated steels, alloy steels and free-cutting steels—Part 17: ball and roller bearing steels, Berlin: Beuth-Verlag

    Google Scholar 

  17. DIN EN 10,083–3 (2007) Steels for quenching and tempering—Part 3: Technical delivery conditions for alloy steels, Berlin: Beuth-Verlag

    Google Scholar 

  18. Behrens BA, Schröder J, Brands D, Scheunemann L, Niekamp R, Chugreev A, Sarhil M, Uebing S, Kock C (2019) Experimental and numerical investigations on the development of residual stresses in thermo-mechanically processed Cr-alloyed steel 1.3505. Metals Nr. 9(4)

    Google Scholar 

  19. Gesellschaft für metallurgische Technologie- und Softwareentwicklung mbH, MatILDa, [Online]. Available: https://www.gmt-stahl.de/en/matilda-2/. [Zugriff am 08 01 2020]

  20. Behrens BA, Chugreev A, Kock C (2018) Experimental–numerical approach to efficient TTT-generation for simulation of phase transformations in thermomechanical forming processes. IOP Conference Series, Materials Science and Engineering, Nr. 461

    Google Scholar 

  21. Behrens BA, Chugreev A, Kock C, Macroscopic FE-simulation of residual stresses in thermo-mechanically processed steels considering phase transformation effects. In: XIV International conference on computational plasticity: fundamentals and applications. 211–222

    Google Scholar 

  22. Acht C, Dalgic M, Frerichs F, Hunkel H, Irretier A, Lübben T, Surm H (2008) Ermittlung der Materialdaten zur Simulation des Durchhärtens von Komponenten aus 100Cr6. J Heat Treat Mater Nr 63:234–244

    Article  CAS  Google Scholar 

  23. JMatPro (2020) Practical software for materials propertie Sente Software Ldt., [Online]. Available: https://www.sentesoftware.co.uk/jmatpro. [Zugriff am 08 01 2020]

  24. Saunders N, Guo U, Li X (2003) Using JMatPro to Model Materials Properties and Behavior. J Miner Met Mater Soc Nr 55:60–65

    Article  CAS  Google Scholar 

  25. Guo Z, Saunders N, Schillé J, Miodownik AP (2009) Material properties for process simulation. Mater Sci Eng: A Nr 1–2:7–13

    Google Scholar 

  26. DIN EN 15,305:2009–1 (2008) Non-destructive testing—test method for residual stress analysis by X-ray diffraction, Berlin: Beuth Verlag

    Google Scholar 

  27. Eigenmann B, Macherauch E (1996) Röntgenographische Untersuchung von Spannungszuständen in Werkstoffen—Teil 3. Materialwissenschaften Und Werkstofftechnik, Nr 27:426–437

    Article  CAS  Google Scholar 

  28. Voigt W (1928) Lehrbuch der Kristallphysik. BG Teubner, Wiesbaden

    Google Scholar 

  29. Reuss A (1929) Berechnung der Fließgrenzen von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift der angewandten Mathematik und Mechanik, Nr 9:49–58

    Article  CAS  Google Scholar 

  30. Special Metals Co (2020) New Hartford, New York, USA, [Online]. Available: http://www.specialmetals.com/assets/smc/540 documents/pcc-8064-sm-alloy-handbook-v04.pdf. [Zugriff am 08 01 2020]

  31. Uebing S, Scheunemann L, Brands D, Schröder J (2019) Numerical thermo-elasto-plastic analysis of residual stresses on different scales during cooling of hot forming parts. In: XIV International Conference on computational plasticity: fundamentals and applications. pp 223–234

    Google Scholar 

Download references

Acknowledgments

Funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft)—374871564 (BE 1691/223-2, BR 5278/3-2, SCHR 570/33-2) within the priority program SPP 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Behrens, BA., Schröder, J., Wester, H., Brands, D., Uebing, S., Kock, C. (2021). Experimental and Numerical Investigations on the Development and Stability of Residual Stresses Arising from Hot Forming Processes. In: Daehn, G., Cao, J., Kinsey, B., Tekkaya, E., Vivek, A., Yoshida, Y. (eds) Forming the Future. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-75381-8_192

Download citation

Publish with us

Policies and ethics