Skip to main content

Computer-Aided Modeling of the Hot Forming Staking Process Based on Experimental Data

  • Conference paper
  • First Online:
Forming the Future

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 90 Accesses

Abstract

As a non-detachable and point-acting joint, thermoplastic staking is primarily used for the production of electronic and sensor elements as well as for the joining of components in the automotive interior and exterior. Commonly, the advantages of staking processes are its cost-efficient and seemingly simple process control. Regarding the industrial application, staking is principally a well-established forming process. However, despite the high number of applications, the joint design and the process settings are mainly based on extensive empirical tests. At present, the FE simulation of these thermoplastic staking processes is not state-of-the-art. Due to these facts, within the frame of the paper, these gaps are to be closed by the computer-aided modeling of the hot forming staking to map the heating and forming behavior of this process close to reality. This procedure demands the associated experimental validation of the simulation. In summary, the numerical model shows high conformity to the experimental data and allows a simulative mapping of the morphological characteristics of the riveted joint as well as indicative statements to the process parameters, which means in particular the minimal heating time for forming and the optimized post-heating time for a morphological homogenization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Härtel S, Brueckner E, Awiszus B, Gehde M (2020) Development of a Numerical Model of the Hot Air Staking Process Based on Experimental Data. Appl Sci 10:7115

    Article  Google Scholar 

  2. Brueckner E (2021) Thermisches Kunststoffnieten – Verfahrensablauf, mechanische Eigenschaften, Versagensverhalten. PhD thesis, Technische Universität Chemnitz. https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa2-735102

  3. Brückner E, Gehde M, Jahnke T et al (2015) Konstruktions- und Prozessoptimierung von Kunststoffnietverbindungen, gemeinsamer Schlussbericht der Forschungsstellen zu dem IGF-Vorhaben, Technische Universität Chemnitz - Professur Kunststoffe, Reportnr. IAIF17997BR, Förderkennzeichen AIF17997, Technische Informationsbibliothek (TIB). https://www.tib.eu/de/suchen/id/TIBKAT%3A866664661

  4. Behrens BA, Bouguecha A, Götze T (2010) Simulation eines wirkmedienbasierten Blechumformprozesses. www.utfscience.de II

  5. Brückner E, Gehde M. Analyse des Prozessablaufs beim thermischen Kunststoffnieten am Beispiel von Polypropylen. In: Technomer 2017–25. Fachtagung über Verarbeitung und Anwendung von

    Google Scholar 

  6. Hahn O, Finkeldey C (2004) Warmluftnieten von langglasfaserverstärkten Thermoplasten mit beschichteten metallischen Werkstoffen, Berichte aus dem Laboratorium für Werkstoff- und Fügetechnik, vol 63. Shaker Verlag, Aachen

    Google Scholar 

  7. Etemadi S (2012) Entwicklung einer praxisnahen Methodik für die Simulation des Clinchklebeprozesses. PhD thesis, Universität Paderborn

    Google Scholar 

  8. Gerstmann T, Awiszus B (2020) Hybrid joining: numerical process development of flat-clinch bonding. J Mater Process Technol 277:116421

    Google Scholar 

  9. Park H-S, Nguyen TT (2015) Development of infrared staking process for an automotive part. Mater Sci Eng 95:012019

    Google Scholar 

  10. Park H-S, Nguyen TT (2017) Development of a new staking process for an automotive part. Int J Adv Manuf Technol 89:1053. https://doi.org/10.1007/s00170-016-9132-0. Polymeren, Chemnitz. ISBN: 978-3-939382-13-3

Download references

Acknowledgments

This study is promoted from budgetary fund of the German Research Foundation (DFG - Project number 413515815). The authors would like to record our appreciation for this support. Furthermore, they would also like to thank the company bdtronic GmbH for their technical and advisory support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Härtel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Härtel, S., Brückner, E., Awiszus, B., Gehde, M. (2021). Computer-Aided Modeling of the Hot Forming Staking Process Based on Experimental Data. In: Daehn, G., Cao, J., Kinsey, B., Tekkaya, E., Vivek, A., Yoshida, Y. (eds) Forming the Future. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-75381-8_117

Download citation

Publish with us

Policies and ethics