Skip to main content

SOS Rules for Equivalences of Reaction Systems

  • Conference paper
  • First Online:
Functional and Constraint Logic Programming (WFLP 2020)

Abstract

Reaction Systems (RSs) are a successful computational framework inspired by biological systems. A RS combines a set of entities with a set of reactions over them. Entities can be provided by an external context, used to enable or inhibit each reaction, and also produced by reactions. RS semantics is defined in terms of an (unlabelled) rewrite system: given the current set of entities, a rewrite step consists of the application of all and only the enabled reactions. In this paper we define, for the first time, a compositional labelled transition system for RSs with recursive and nondeterministic contexts, in the structural operational semantics (SOS) style. This is achieved by distilling a signature whose operators directly correspond to the ingredients of RSs and by defining some simple SOS inference rules for any such operator. The rich information recorded in the labels allows us to define an assertion language to tailor behavioural equivalences on some specific properties or entities. The SOS approach is suited to drive additional enhancements of RSs along features such as quantitative measurements of entities and communication between RSs. The SOS rules have been also exploited to design a prototype implementation in logic programming.

Research supported by MIUR PRIN 201784YSZ5 ASPRA, by U. of Pisa PRA_2018_66 DECLWARE, by U. of Sassari: Fondo di Ateneo per la ricerca 2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Conceptually, one could extend labels to record J and Q in separate positions from R and I, respectively, like in \(\langle W\vartriangleright R,J,I,Q,P\rangle \). However, one would then need to rewrite the side conditions of all the rules by replacing R with \(R\cup J\) and I with \(I\cup Q\), because the distinction is never exploited in the SOS rules.

  2. 2.

    https://www3.diism.unisi.it/~falaschi/AssertionsForReactionSystems.

References

  1. Azimi, S.: Steady states of constrained reaction systems. Theor. Comput. Sci. 701(C), 20–26 (2017). https://doi.org/10.1016/j.tcs.2017.03.047

    Article  MathSciNet  MATH  Google Scholar 

  2. Azimi, S., Iancu, B., Petre, I.: Reaction system models for the heat shock response. Fundam. Inf. 131(3–4), 299–312 (2014). https://doi.org/10.3233/FI-2014-1016

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Investigating dynamic causalities in reaction systems. Theor. Comput. Sci. 623, 114–145 (2016). https://doi.org/10.1016/j.tcs.2015.11.041

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: Bisimulations in calculi modelling membranes. Form. Asp. Comput. 20(4), 351–377 (2008). https://doi.org/10.1007/s00165-008-0071-x

    Article  MATH  Google Scholar 

  5. Bodei, C., Brodo, L., Bruni, R.: A formal approach to open multiparty interactions. Theor. Comput. Sci. 763, 38–65 (2019). https://doi.org/10.1016/j.tcs.2019.01.033

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodei, C., Brodo, L., Bruni, R.: The link-calculus for open multiparty interactions. Inf. Comput. 275, 104587 (2020). https://doi.org/10.1016/j.ic.2020.104587

    Article  MathSciNet  MATH  Google Scholar 

  7. Bottoni, P., Labella, A., Rozenberg, G.: Networks of reaction systems. Int. J. Found. Comput. Sci. 31, 53–71 (2020). https://doi.org/10.1142/S0129054120400043

    Article  MathSciNet  MATH  Google Scholar 

  8. Brijder, R., Ehrenfeucht, A., Main, M., Rozenberg, G.: A tour of reaction systems. Int. J. Found. Comput. Sci. 22(07), 1499–1517 (2011). https://doi.org/10.1142/S0129054111008842

    Article  MathSciNet  MATH  Google Scholar 

  9. Brodo, L., Bruni, R., Falaschi, M.: Enhancing reaction systems: a process algebraic approach. In: Alvim, M.S., Chatzikokolakis, K., Olarte, C., Valencia, F. (eds.) The Art of Modelling Computational Systems: A Journey from Logic and Concurrency to Security and Privacy. LNCS, vol. 11760, pp. 68–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31175-9_5

    Chapter  Google Scholar 

  10. Brodo, L., Bruni, R., Falaschi, M.: A process algebraic approach to reaction systems. Theor. Comput. Sci. (2020). https://doi.org/10.1016/j.tcs.2020.09.001. In Press

  11. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213 (2000). https://doi.org/10.1016/S0304-3975(99)00231-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward bisimulations for chemical reaction networks. In: CONCUR 2015, vol. 42, pp. 226–239. Schloss Dagstuhl Publ. (2015). https://doi.org/10.4230/LIPIcs.CONCUR.2015.226

  13. Chiarugi, D., Falaschi, M., Olarte, C., Palamidessi, C.: Compositional modelling of signalling pathways in timed concurrent constraint programming. In: BCB 2010, pp. 414–417. ACM (2010). https://doi.org/10.1145/1854776.1854843

  14. Corolli, L., Maj, C., Marinia, F., Besozzi, D., Mauri, G.: An excursion in reaction systems: from computer science to biology. Theor. Comput. Sci. 454, 95–108 (2012). https://doi.org/10.1016/j.tcs.2012.04.003

    Article  MathSciNet  MATH  Google Scholar 

  15. Falaschi, M., Olarte, C., Palamidessi, C.: Abstract interpretation of temporal concurrent constraint programs. Theory Pract. Logic Program. 15(3), 312–357 (2015). https://doi.org/10.1017/S1471068413000641

    Article  MathSciNet  MATH  Google Scholar 

  16. Falaschi, M., Olarte, C., Palamidessi, C.: A framework for abstract interpretation of timed concurrent constraint programs. In: PPDP 2009. pp. 207–218. ACM (2009). https://doi.org/10.1145/1599410.1599436

  17. Falaschi, M., Palma, G.: A logic programming approach to reaction systems. In: DIP 2020. OASIcs, vol. 86, pp. 6:1–6:15. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/OASIcs.Gabbrielli.6

  18. Gordon, A., Cardelli, L.: Equational properties of mobile ambients. Math. Struct. Comput. Sci. 13(3), 371–408 (2003). https://doi.org/10.1017/S0960129502003742

    Article  MathSciNet  MATH  Google Scholar 

  19. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2_79

    Chapter  Google Scholar 

  20. Hillston, J.: A compositional approach to performance modelling. Ph.D. thesis, University of Edinburgh, UK (1994). http://hdl.handle.net/1842/15027

  21. Kleijn, J., Koutny, M., Mikulski, Ł, Rozenberg, G.: Reaction systems, transition systems, and equivalences. In: Böckenhauer, H.-J., Komm, D., Unger, W. (eds.) Adventures Between Lower Bounds and Higher Altitudes. LNCS, vol. 11011, pp. 63–84. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98355-4_5

    Chapter  Google Scholar 

  22. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

    Book  MATH  Google Scholar 

  23. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9_114

    Chapter  Google Scholar 

  24. Okubo, F., Yokomori, T.: The computational capability of chemical reaction automata. Nat. Comput. 15(2), 215–224 (2015). https://doi.org/10.1007/s11047-015-9504-7

    Article  MathSciNet  MATH  Google Scholar 

  25. Plotkin, G.D.: A structural approach to operational semantics. Technical report DAIMI FN-19, Computer Science Department, Aarhus University (1981)

    Google Scholar 

  26. Plotkin, G.D.: An operational semantics for CSP. In: IFIP Working Conference on Formal Description of Programming Concepts - II, North-Holland, pp. 199–226 (1982)

    Google Scholar 

  27. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebraic Methods Program. 60–61, 17–139 (2004). https://doi.org/10.1016/j.jlap.2004.05.001

    Article  MathSciNet  MATH  Google Scholar 

  28. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge University Press, USA (2011). https://doi.org/10.1017/CBO9780511777110

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their detailed and very useful criticisms and recommendations that helped us to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moreno Falaschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brodo, L., Bruni, R., Falaschi, M. (2021). SOS Rules for Equivalences of Reaction Systems. In: Hanus, M., Sacerdoti Coen, C. (eds) Functional and Constraint Logic Programming. WFLP 2020. Lecture Notes in Computer Science(), vol 12560. Springer, Cham. https://doi.org/10.1007/978-3-030-75333-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75333-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75332-0

  • Online ISBN: 978-3-030-75333-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics