Skip to main content

Comparison of Chemical Parameters in Zinc Biofortified Flours of Triticum aestivum L.: Development of a Functional Food

  • Conference paper
  • First Online:
Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021) (ICoWEFS 2021)

Abstract

In the next 30 years a sharp increase in the world population is expected, which determines the need of an increasing food production, linked to a high nutritional pattern, to ensure human health. In this context, as bread wheat is one of the most produced cereals worldwide, its mineral enrichment through agronomic biofortification is of great interest. Under this framework, considering that zinc deficiency triggers some pathologies in the human population, this study presents an agronomic workflow for Zn enrichment of bread wheat and aimed to evaluate the technological quality of the related flours (whole and refined bread wheat flours), to create an innovative product, with added value and capable of supplying nutritional deficiencies in zinc. Tests were carried out after three foliar applications of Zn-EDTA, in three different concentrations, in Paiva and Roxo varieties of Triticum aestivum L. Therefore, an analytical determination of ash and moisture contents, Zn, Ca and K on bread wheat flours and scanning colorimetry were carried out. Whole bread wheat flours submitted to the workflow of Zn enrichment revealed, relatively to refined flours, higher contents of ash, Zn, Ca and K. Nevertheless, in the scanning colorimetric analysis, two transmittance peaks were recorded at 550 and 650 nm in the regions of the visible spectrum, in which the whole flour presented lower values. The obtained data is discussed, being concluded that whole wheat flours resulted in flours nutritionally more interesting, allowing the design of innovative and functional foods produced from Zn enriched flours with added value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations, Department of Economics and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423). United Nations, Department of Economics and Social Affairs, Population Division: New York, NY, USA (2019)

    Google Scholar 

  2. Chakraborty, I., Maity, P.: COVID-19 outbreak: Migration, effects on society, global environment and prevention. Sci. Total Environ. 728(138882), 1–7 (2020). https://doi.org/10.1016/j.scitotenv.2020.138882

    Article  CAS  Google Scholar 

  3. Micelli, E., Cito, G., Cocci, A., Polloni, G., Russo, G.I., Minervini, A., Carini, M., Natali, A., Coccia, M.E.: Desire for parenthood at the time of COVID-19 pandemic: An insight into the Italian situation. J. Psychosom. Obstet. Gynaecol. 41(3), 183–190 (2020). https://doi.org/10.1080/0167482X.2020.1759545

    Article  Google Scholar 

  4. Food and Agriculture Organization of the United Nations (FAO). https://www.fao.org/worldfoodsituation/csdb/en/. Accessed 28 Jan 2021

  5. Zhang, Y., Pei, F., Fang, Y., Li, P., Zhao, Y., Shen, F., Zou, Y., Hu, Q.: Comparison of concentration and health risks of 9 Fusarium mycotoxins in commercial whole wheat flour and refined wheat flour by multi-IAC-HPLC. Food Chem. 275, 763–769 (2019). https://doi.org/10.1016/j.foodchem.2018.09.127

    Article  CAS  Google Scholar 

  6. Tian, W., Chen, G., Tilley, M., Li, Y.: Changes in phenolic profiles and antioxidant activities during the whole wheat bread-making process. Food Chem 345(128851), 1 (2021). https://doi.org/10.1016/j.foodchem.2020.128851

    Article  CAS  Google Scholar 

  7. Ciccolini, V., Pellegrino, E., Coccina, A., Fiaschi, A.I., Cerretani, D., Sgherri, C., Quartacci, M.F., Ercoli, L.: Biofortification wih iron and zinc improves nutritional and nutraceutical properties of common wheat flour and bread. J. Agric. Food Chem. 65, 5443–5452 (2017). https://doi.org/10.1021/acs.jafc.7b01176

    Article  CAS  Google Scholar 

  8. Cakmak, I., Kutman, U.B.: Agronomic biofortification of cereals with zinc: a review. Eur. J. Soil Sci. 69, 172–180 (2018). https://doi.org/10.1111/ejss.12437

    Article  Google Scholar 

  9. Bouis, H.E., Saltzman, A.: Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Sec. 12, 49–58 (2017). https://doi.org/10.1016/j.gfs.2017.01.009

    Article  Google Scholar 

  10. Saini, D.K., Devi, P., Kaushik, P.: Advances in genomic interventions for wheat biofortification: a review. Agronomy 10(62), 1–28 (2020). https://doi.org/10.3390/agronomy10010062

    Article  CAS  Google Scholar 

  11. Izydorczyk, G., Ligas, B., Mikula, K., Witek-Krowiak, A., Moustakas, K., Chojnacka, K.: Biofortification of edible plants with selenium and iodine – a systematic literature review. Sci. Total Environ. 754(141983), 1–15 (2021). https://doi.org/10.1016/j.scitotenv.2020.141983

    Article  CAS  Google Scholar 

  12. Marques, A.C., Lidon, F.C., Coelho, A.R.F., Pessoa, C.C., Luís, I.C., Soctti-Campos, P., Simões, M., Almeida, A.S., Legoinha, P., Pessoa, M.F., Galhano, C., Guerra, M.A.M., Leitão, R.G., Ramalho, J.C., Semedo, J.M.N., Bagulho, A., Moreira, J., Rodrigues, A.P., Marques, P., Silva, C., Ribeiro-Barros, A., Silva, M.J., Silva, M.M., Oliveira, K., Ferreira, D., Pais, I.P., Reboredo, F.H.: Quantification and tissue localization of selenium in rice (Oryza sativa L., Poaceae) grains: a perspective of agronomic biofortification. Plants 9(12), 1670 (2020). https://doi.org/10.3390/plants9121670

    Article  CAS  Google Scholar 

  13. Buturi, C.V., Mauro, R.P., Fogliano, V., Leonardi, C., Giuffrida, F.: Mineral biofortification of vegetables as a tool to improve human diet. Foods 10(223), 1–23 (2021). https://doi.org/10.3390/foods10020223

    Article  Google Scholar 

  14. Coelho, A.R.F., Lidon, F.C., Pessoa, C.C., Marques, A.C., Luís, I.C., Caleiro, J., Simões, M., Kullberg, J., Legoinha, P., Brito, M., Guerra, M., Leitão, R.G., Galhano, C., Scotti-Campos, P., Semedo, J.N., Silva, M.M., Pais, I.P., Silva, M.J., Rodrigues, A.P., Pessoa, M.F., Ramalho, J.C., Reboredo, F.H.: Can foliar pulverization with CaCl2 and Ca(NO3)2 trigger Ca enrichment in Solanum tuberosum L. tubers? Plants 10(2), 245 (2021). https://doi.org/10.3390/plants10020245

    Article  CAS  Google Scholar 

  15. Luís, I.C., Lidon, F.C., Pessoa, C.C., Marques, A.C., Coelho, A.R.F., Simões, M., Patanita, M., Dôres, J., Ramalho, J.C., Silva, M.M., Almeida, A.S., Pais, I.P., Pessoa, M.F., Reboredo, F.H., Legoinha, P., Guerra, M., Leitão, R.G., Campos, P.S.: Zinc enrichment in two contrasting genotypes of Triticum aestivum L. grains: interactions between edaphic condition and foliar fertilizers. Plants 10(2), 204 (2021). https://doi.org/10.3390/plants10020204

    Article  CAS  Google Scholar 

  16. Motoya, M., Guardia, G., Recio, J., Castellano-Hinojosa, A., Ginés, C., Bedmar, E.J., Álvarez, J.M., Vallejo, A.: Zinc-nitrogen co-fertilization influences N2O emissions and microbial communities in an irrigated maize field. Geoderma 383(114735), 1–12 (2021). https://doi.org/10.1016/j.geoderma.2020.114735

    Article  CAS  Google Scholar 

  17. Pessoa, C.C., Lidon, F.C., Coelho, A.R.F., Caleiro, J.C., Marques, A.C., Luís, I.C., Kullberg, J.C., Legoinha, P., Brito, M.G., Ramalho, J.C., Guerra, M.A.M., Leitão, R.G., Simões, M., Campos, P.S., Semedo, J.M.N., Silva, M.M., Pais, I.P., Leal, N., Alvarenga, N., Gonçalves, E.M., Silva, M.J., Rodrigues, A.P., Abreu, M., Pessoa, M.F., Reboredo, F.H.: Calcium biofortification of Rocha pears, tissues accumulation and physicochemical implications in fresh and heat-treated fruits. Sci. Hortic. 277(109834), 1–11 (2021). https://doi.org/10.1016/j.scienta.2020.109834

    Article  CAS  Google Scholar 

  18. Vaiknoras, K., Larochelle, C.: The impact of iron-biofortified bean adoption on bean productivity, consumption, purchases and sales. World Dev 139(105260), 1–17 (2021). https://doi.org/10.1016/j.worlddev.2020.105260

    Article  Google Scholar 

  19. NP 519: Cereais e Derivados. Determinação do Teor de Cinza a 900 ºC. Processo Corrente. Instituto Português da Qualidade, Portugal, p. 5 (1993)

    Google Scholar 

  20. NP 516: Cereais e Derivados. Determinação do Teor de Água. Método Prático de Referência. Instituto Português da Qualidade: Portugal, p. 5 (2000)

    Google Scholar 

  21. Lidon, F.C., Daccak, D., Scotti-Campos, P., Silva, M.M., Bagulho, A.S., Pais, I., Galhano, C., Ramalho, J.C., Moreira, J., Pessoa, M.F., Reboredo, F.H.: An integrated chemical and technological approach for assessing portuguese wheat flours quality and lengthening bread shelf-life. Emir. J. Food Agric. 31(11), 884–894 (2019). https://doi.org/10.9755/ejfa.2019.v31.i11.2037

    Article  Google Scholar 

  22. Ramalho, J.C., Pais, I.P., Leitão, A.E., Guerra, M., Reboredo, F.H., Máguas, C.M., Carvalho, M.L., Scotti-Campos, P., Ribeiro-Barros, A.I., Lidon, F.C., DaMatta, F.M.: Can elevated air [CO2] conditions mitigate the predicted warming impact on the quality of coffee bean? Front. Plant Sci. 9(287), 1–14 (2018). https://doi.org/10.3389/fpls.2018.00287

    Article  Google Scholar 

  23. Pelica, J., Barbosa, S., Reboredo, F., Lidon, F., Pessoa, F., Calvão, T.: The paradigm of high concentration of metals of natural or anthropogenic origin in soils – The case of Neves-Corvo mine area (Southern Portugal). J. Geochem. Explor. 186, 12–23 (2018). https://doi.org/10.1016/j.gexplo.2017.11.021

    Article  CAS  Google Scholar 

  24. Ramos, I., Pataco, I.M., Mourinho, M.P., Lidon, F., Reboredo, F., Pessoa, M.F., Carvalho, M.L., Santos, J.P., Guerra, M.: Elemental mapping of biofortified wheat grains using micro X-ray fluorescence. Spectrochim. Acta Part B At 120, 30–36 (2016). https://doi.org/10.1016/j.sab.2016.03.014

    Article  CAS  Google Scholar 

  25. Liu, J., Yu, L.L., Wu, Y.: Bioactive components and health beneficial properties of whole wheat foods. J. Agric. Food Chem. 68, 12904–12915 (2020). https://doi.org/10.1021/acs.jafc.0c00705

    Article  CAS  Google Scholar 

  26. Gomez-Coronado, F., Poblaciones, M.J., Almeida, A.S., Cakmak, I.: Zinc (Zn) concentration of bread wheat grown under Mediterrranean conditions as affected by genotype and soil/foliar Zn application. Plant Soil 401, 331–346 (2016). https://doi.org/10.1007/s11104-015-2758-0

    Article  CAS  Google Scholar 

  27. Loneragan, J.F., Webb, M.J.: Interactions between zinc and other nutrients affecting the growth of plants. In: Robson, A.D. (eds.) Zinc in Soils and Plants: Developments in Plant and Soil Sciences. Springer, vol. 55, pp. 119–134. Dordrecht, Netherlands (1993). https://doi.org/10.1007/978-94-011-0878-2_9

  28. Prasad, R., Shivay, Y.S., Kumar, D.: Interactions of zinc with other nutrients in soils and plants—a review. Indian J. Fertil. 12, 16–26 (2016)

    Google Scholar 

  29. Rengel, Z.: Carbonic anhydrase activity in leaves of wheat genotypes differing in Zn efficiency. J. Plant Physiol. 147, 251–256 (1995). https://doi.org/10.1016/S0176-1617(11)81513-0

    Article  CAS  Google Scholar 

  30. Pendias, A.K.: Trace Elements in Soils and Plants, 4th ed. CRC Press, Boca Raton (2011). https://doi.org/10.1201/b10158.

  31. Lancelot, E., Fontaine, J., Grua-Priol, J., Le-Bail, A.: Effect of long-term storage conditions on wheat flour and bread baking properties. Food Chem. 346(128902), 1–8 (2021). https://doi.org/10.1016/j.foodchem.2021.128902

    Article  Google Scholar 

  32. Nasir, M., Butt, M.S., Anjum, F.M., Sharif, K., Minhas, R.: Effect of moisture on the shelf life of wheat flour. Int. J. Agri. Biol. 5(4), 458–459 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês Carmo Luís .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luís, I.C. et al. (2021). Comparison of Chemical Parameters in Zinc Biofortified Flours of Triticum aestivum L.: Development of a Functional Food. In: da Costa Sanches Galvão, J.R., et al. Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021). ICoWEFS 2021. Springer, Cham. https://doi.org/10.1007/978-3-030-75315-3_16

Download citation

Publish with us

Policies and ethics