Skip to main content

New Variable Stiffness Joint (VSJ): Study and Simulation

  • Conference paper
  • First Online:
Mechanism Design for Robotics (MEDER 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 103))

Included in the following conference series:

Abstract

Variable stiffness joints are devices that allow changing the joint stiffness of a mechanism. The development of this joint has increased, and various applications have emerged, most to improve human-robot interaction. This paper presents a proposal design of a new variable stiffness joint (VSJ). The working principle consists of antagonist extension springs with a rack and pinion mechanism. The springs are attached to a set of racks that allow varying the spring length, the main factor in varying the stiffness. The racks engage with a set of gears; one has a motor attached, which is responsible for varying the joint stiffness. Its mathematical model describes the joint behavior to maintain a constant force at the end of a link. Its simulation is performed with a constant force placed at the end of the link to evaluate the joint’s performance in a rotational situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howell, L., Magleby, S., Olsen, B.: Compliant Mechanisms. Wiley, New York (2013)

    Book  Google Scholar 

  2. Medina, J., Jardón, A., Balaguer, C.: Control desacoplado de un actuador de rigidez variable para robots asistenciales. Revista Panamericana de Automática e Informática Industrial 13, 80–91 (2016)

    Article  Google Scholar 

  3. Pratt, G., Williamson, M.: Series elastic actuators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, p. 399. IEEE, Pittsburgh (1995)

    Google Scholar 

  4. Tsagarakis, N.G., Laffranchi, M., Cannella, F., Caldwell, D.G.: Antagonistic and series elastic actuators: a comparative analysis on the energy consumption. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA, pp. 5678–5684. IEEE (2009)

    Google Scholar 

  5. López-Martínez, J., Giménez-Fernández, A., García-Vallejo, D., Jardón-Huete A., Balaguer-Bernaldo C.: Diseño y simulación de un actuador de rigidez variable. Asociación Española de Ingeniería Mecánica. XIX Congreso Nacional de Ingeniería Mecánica (2012). ISSN 0212-5072

    Google Scholar 

  6. Yuwang, L., Xiagang, L., Zhongqiu, Y., Jinguo, L.: Design and analysis of spring parallel variable stiffness actuator based on antagonistic principle. Mech. Mach. Theory 140, 44–58 (2019)

    Article  Google Scholar 

  7. English, C., Russell, D.: Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs. Mech. Mach. Theory 32(1), 7–25 (1999)

    Article  Google Scholar 

  8. Braun, D.J., Howard, M., Vijayakumar, S.: Exploiting variable stiffness in explosive movement tasks. In: Robotics: Science and Systems VII, vol. 7, pp. 25–32 (2012)

    Google Scholar 

  9. Jafari, A., Tsagarakis, G., Vanderborght, B., Caldwell, G.: A novel actuator with adjustable stiffness (AwAS). In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp. 4201–4206 (2010)

    Google Scholar 

  10. Schiavi, R., Bicchi, A., Tonietti, G.: Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 526–531 (2005)

    Google Scholar 

  11. Contreras-Calderon, M.G., Castillo-Castañeda, E.: Design of a variable stiffness joint for a five-bar-mechanism. In: Advances in Service and Industrial Robotics. Results of RAAD, Switzerland AG, pp. 54–63 (2020)

    Google Scholar 

  12. Robinson, M.: A compliant mechanism-based variable-stiffness joint. Master thesis, Utha (2015)

    Google Scholar 

  13. Kim, B., Song, J.: Hybrid dual actuator unit: a design of a variable stiffness actuator based on an adjustable moment arm mechanism. In: IEEE International Conference on Robotics and Automation Anchorage Convention District, Anchorage, Alaska, pp. 1655–1660 (2010)

    Google Scholar 

  14. Lee springs. https://www.leespring.mx/es/conoce-mas-resortes-de-extension. Acceded 08 Feb 2021

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Contreras-Calderón, M.G., Laribi, M.A., Castillo-Castañeda, E. (2021). New Variable Stiffness Joint (VSJ): Study and Simulation. In: Zeghloul, S., Laribi, M.A., Arsicault, M. (eds) Mechanism Design for Robotics. MEDER 2021. Mechanisms and Machine Science, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-030-75271-2_30

Download citation

Publish with us

Policies and ethics