Skip to main content

Extending Partial Representations of Rectangular Duals with Given Contact Orientations

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2021)

Abstract

A rectangular dual of a graph G is a contact representation of G by axis-aligned rectangles such that (i) no four rectangles share a point and (ii) the union of all rectangles is a rectangle. The partial representation extension problem for rectangular duals asks whether a given partial rectangular dual can be extended to a rectangular dual, that is, whether there exists a rectangular dual where some vertices are represented by prescribed rectangles. Combinatorially, a rectangular dual can be described by a regular edge labeling (REL), which determines the orientations of the rectangle contacts. We characterize the RELs that admit an extension, which leads to a linear-time testing algorithm. In the affirmative, we can construct an extension in linear time.

Partially supported by DFG grants Ru 1903/3-1 and Wo 758/11-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976). https://doi.org/10.1016/S0022-0000(76)80045-1

    Article  MathSciNet  MATH  Google Scholar 

  2. Brooks, R.L., Smith, C.A.B., Stone, A.H., Tutte, W.T.: The dissection of rectangles into squares. Duke Math. J. 7(1), 312–340 (1940). https://doi.org/10.1215/S0012-7094-40-00718-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Buchin, K., Speckmann, B., Verdonschot, S.: Evolution strategies for optimizing rectangular cartograms. In: Xiao, N., Kwan, M.-P., Goodchild, M.F., Shekhar, S. (eds.) GIScience 2012. LNCS, vol. 7478, pp. 29–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33024-7_3

    Chapter  Google Scholar 

  4. Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular layouts and contact graphs. ACM Trans. Algorithms 4(1) (2008). https://doi.org/10.1145/1328911.1328919

  5. Chaplick, S., Dorbec, P., Kratochvíl, J., Montassier, M., Stacho, J.: Contact representations of planar graphs: extending a partial representation is hard. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 139–151. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0_12

    Chapter  Google Scholar 

  6. Chaplick, S., Fulek, R., Klavík, P.: Extending partial representations of circle graphs. J. Graph Theory 91(4), 365–394 (2019). https://doi.org/10.1002/jgt.22436

    Article  MathSciNet  MATH  Google Scholar 

  7. Chaplick, S., Guśpiel, G., Gutowski, G., Krawczyk, T., Liotta, G.: The partial visibility representation extension problem. Algorithmica 80(8), 2286–2323 (2017). https://doi.org/10.1007/s00453-017-0322-4

    Article  MathSciNet  MATH  Google Scholar 

  8. Duncan, C.A., Gansner, E.R., Hu, Y., Kaufmann, M., Kobourov, S.G.: Optimal polygonal representation of planar graphs. Algorithmica 63(3), 672–691 (2012). https://doi.org/10.1007/s00453-011-9525-2

    Article  MathSciNet  MATH  Google Scholar 

  9. Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal and constrained rectangular layouts. SIAM J. Comput. 41(3), 537–564 (2012). https://doi.org/10.1137/110834032

    Article  MathSciNet  MATH  Google Scholar 

  10. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 213–248. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-0110-0_12

  11. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Comb. Probab. Comput. 3(2), 233–246 (1994). https://doi.org/10.1017/S0963548300001139

    Article  MathSciNet  MATH  Google Scholar 

  12. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Biol. 18(3), 259–278 (1969). https://doi.org/10.2307/2412323

  13. Heilmann, R., Keim, D.A., Panse, C., Sips, M.: RecMap: rectangular map approximations. In: Ward, M.O., Munzner, T. (eds.) IEEE Symposium on Information Visualization. pp. 33–40. IEEE Computer Society (2004). https://doi.org/10.1109/INFVIS.2004.57

  14. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoret. Comput. Sci. 172(1), 175–193 (1997). https://doi.org/10.1016/S0304-3975(95)00257-X

    Article  MathSciNet  MATH  Google Scholar 

  15. Klavík, P., et al.: Extending partial representations of proper and unit interval graphs. Algorithmica 77(4), 1071–1104 (2016). https://doi.org/10.1007/s00453-016-0133-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T., Vyskočil, T.: Extending partial representations of interval graphs. Algorithmica 78(3), 945–967 (2016). https://doi.org/10.1007/s00453-016-0186-z

    Article  MathSciNet  MATH  Google Scholar 

  17. Klawitter, J., Nöllenburg, M., Ueckerdt, T.: Combinatorial properties of triangle-free rectangle arrangements and the squarability problem. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 231–244. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27261-0_20

    Chapter  MATH  Google Scholar 

  18. Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig. Math. Phys. Klasse 88, 141–164 (1936)

    Google Scholar 

  19. Koźmiński, K., Kinnen, E.: Rectangular duals of planar graphs. Networks 15(2), 145–157 (1985). https://doi.org/10.1002/net.3230150202

    Article  MathSciNet  MATH  Google Scholar 

  20. Krawczyk, T., Walczak, B.: Extending partial representations of trapezoid graphs. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 358–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6_27

    Chapter  Google Scholar 

  21. van Kreveld, M.J., Speckmann, B.: On rectangular cartograms. Comput. Geom. 37(3), 175–187 (2007). https://doi.org/10.1016/j.comgeo.2006.06.002

    Article  MathSciNet  MATH  Google Scholar 

  22. Kusters, V., Speckmann, B.: Towards characterizing graphs with a sliceable rectangular dual. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 460–471. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27261-0_38

    Chapter  Google Scholar 

  23. Leinwand, S.M., Lai, Y.-T.: An algorithm for building rectangular floor-plans. In: 21st Design Automation Conference Proceedings, pp. 663–664 (1984). https://doi.org/10.1109/DAC.1984.1585874

  24. Nusrat, S., Kobourov, S.G.: The state of the art in cartograms. Comput. Graph. Forum 35(3), 619–642 (2016). https://doi.org/10.1111/cgf.12932

    Article  Google Scholar 

  25. Raisz, E.: The rectangular statistical cartogram. Geogr. Rev. 24(2), 292–296 (1934). https://doi.org/10.2307/208794

    Article  Google Scholar 

  26. Steadman, P.: Graph theoretic representation of architectural arrangement. In: Architectural Research and Teaching, pp. 161–172 (1973)

    Google Scholar 

  27. Yeap, G.K.H., Sarrafzadeh, M.: Sliceable floorplanning by graph dualization. SIAM J. Discrete Math. 8(2), 258–280 (1995). https://doi.org/10.1137/S0895480191266700

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaplick, S., Kindermann, P., Klawitter, J., Rutter, I., Wolff, A. (2021). Extending Partial Representations of Rectangular Duals with Given Contact Orientations. In: Calamoneri, T., Corò, F. (eds) Algorithms and Complexity. CIAC 2021. Lecture Notes in Computer Science(), vol 12701. Springer, Cham. https://doi.org/10.1007/978-3-030-75242-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75242-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75241-5

  • Online ISBN: 978-3-030-75242-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics