Skip to main content

Predicting Epidemic Outbreaks Using IOT, Artificial Intelligence and Cloud

  • Chapter
  • First Online:
The Fusion of Internet of Things, Artificial Intelligence, and Cloud Computing in Health Care

Abstract

All COVID-19 affected countries putting their efforts to deal with the outspread of this death-dealing disease in terms of infrastructure, economics, medical treatments and many other resources. Nowadays, there are number of coronavirus analysis and prediction models are available to make decisions and to informed, aware people. But, absence of necessary data, these models are not able to show precise values. Based on the datasets, reports and on account of the uniform nature of the coronavirus and variations in its behaviour from place-to-place, this study recommend ML as well as deep learning as worthwhile tool to model the outbreak. To come up with for the well-being of living society, we prefer to utilize the ML and deep learning models with the focus for understanding its everyday exponential behaviour in addition to the prediction graphs of further growth of the COVID-2019 over the world by utilizing the available facts and dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basic definitions for outbreak epidemic and pandemic. https://www.webmd.com/cold-and-flu/what-are-epidemics-pandemics-outbreaks

  2. Covid-2019 datasets from https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge

  3. Machine learning information. https://en.wikipedia.org/wiki/Machine_learning

  4. Types of Machine Learning. https://searchenterpriseai.techtarget.com/definition/machinelearningML

  5. Deep Learning Information. https://www.tutorialspoint.com/tensorflow/tensorflow_machine_learning_deep_learning.htm

  6. GitHub Repository. (2019). Novel coronavirus COVID-19 (2019-nCoV) data repository by Johns Hopkins CSSE. Retrieved March 31, 2020, from https://github.com/CSSEGISandData/COVID-19

  7. Amini, A., Chen, W., Fortino, G., Li, Y., Pan, Y., & Wang, M. D. (2020). AI-driven informatics, sensing, imaging and big data analytics for fighting the COVID-19 pandemic. IEEE Journal of Biomedical and Health Informatics, 24(10), 2731–2732.

    Article  Google Scholar 

  8. Navares, R., Díaz, J., Linares, C., & Aznarte, J. L. (2018). Comparing ARIMA and computational intelligence methods to forecast daily hospital admissions due to circulatory and respiratory causes in Madrid. Stochastic Environmental Research and Risk Assessment, 32(10), 2849–2859.

    Article  Google Scholar 

  9. Barstugan, M., Ozkaya, U., & Ozturk, S. (2020). Coronavirus (covid-19) classification using ct images by machine learning methods. arXiv preprint arXiv:2003.09424.

    Google Scholar 

  10. Gruber, T. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2), 199–220.

    Article  Google Scholar 

  11. Uschold, M. (2003). Where are the semantics in the semantic web? AI Magazine, 24(3), 25–36.

    Google Scholar 

  12. Ding, L., Finin, T., Joshi, A., Peng, Y., Pan, R., & Reddivari, P. (2005). Search on the semantic web. IEEE Computer, 10(38), 62–69.

    Article  Google Scholar 

  13. Horrocks, I. (2007). Semantic web: the story so far. In Proc. of the 2007 int. cross- disciplinary conf. on web accessibility (W4A) (pp. 120–125). ACM.

    Chapter  Google Scholar 

  14. Zeshan, F., & Mohamad, R. (2012). Medical ontology in the dynamic healthcare environment, the 3rd international conference on ambient systems, networks and technologies (ANT). Procedia Computer Science, 10, 340–348.

    Article  Google Scholar 

  15. Kaur, P., & Khamparia, A. (2014). Review on medical care ontologies. International Journal of Science and Research (IJSR), 3(12), 677–680.

    Google Scholar 

  16. Jean-Mary, Y. R., Shironoshita, E. P., & Kabuka, M. R. (2009). Ontology matching with semantic verification. Journal of Web Semantics, 7(3), 235–251.

    Article  Google Scholar 

  17. Susel Fernández, R., Velasco, J., Marsa-Maestre, I., Miguel, A., & Lopez-Carmona (2012). Fuzzy align: A fuzzy method for ontology alignment. In Proceedings of the international conference on knowledge engineering and ontology development.

    Google Scholar 

  18. Shitharth, S., Sangeetha, & Kumar, P. (2019). Integrated probability relevancy classification (IPRC) for IDS in SCADA. Design Framework for wireless network, Lecture notes in network and systems, Springer, 82(1), 41–64.

    Google Scholar 

  19. Piccialli, F., Somma, V. D., Giampaolo, F., Cuomo, S., & Fortino, G. (2021). A survey on deep learning in medicine: Why, how and when? Information Fusion, 66, 111–137.

    Article  Google Scholar 

  20. Wong, K. K. L., Fortino, G., & Abbott, D. (2021). Deep learning-based cardiovascular image diagnosis: A promising challenge. Future Generation Computer Systems, 110, 802–811.

    Article  Google Scholar 

  21. Ngo, D., & Bellahsene, Z. (2012). YAM++: A multi-strategy based approach for ontology matching task. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) LNAI (Vol. 7603, pp. 421–425).

    Google Scholar 

  22. Bodenreider, O. (2013). Disease ontology, encyclopedia of systems biology (pp. 578–581). Springer.

    Book  Google Scholar 

  23. Ibrahim, A. M., Hashi, H. A., & Mohamed, A. A. (2013). Ontology driven information retrieval for healthcare information system: A case study. International Journal of Network Security & Its Applications (IJNSA), 5(1).

    Google Scholar 

  24. Babcock, S., Lindsay, G., Cowell, J. B., & Smith, B. (2020). The infectious disease ontology in the age of COVID-19. In OSF preprints. Center for Open Science.

    Google Scholar 

  25. He, Y., et al. (2020). CIDO-a community-based ontology for coronavirus disease knowledge and data integration, sharing, and analysis. http://www.nature.com/scientificdata.

  26. Oyelade, O. N., & Ezugwu, A. E. (2020). COVID19: A natural language processing and ontology-oriented temporal case-based framework for early detection and diagnosis of novel coronavirus. Preprint www.preprints.org.

  27. Shitharth, S., Shaik, M., Sirajudeen, & Sangeetha. (2019). Mining of intrusion attack in SCADA network using clustering and genetically seeded flora-based optimal classification algorithm. Information Security, IET, 14(1), 1–11.

    Google Scholar 

  28. Pirouz, B., Shaffiee Haghshenas, S., Shaffiee Haghshenas, S., & Piro, P. (2020). Investigating a serious challenge in the sustainable development process: Analysis of confirmed cases of COVID-19 (new type of coronavirus) through a binary classification using artificial intelligence and regression analysis. Sustainability, 12(6), 2427.

    Article  Google Scholar 

  29. Mohammed, A., Al-qaness, Ewees, A. A., Fan, H., & El Aziz, M. A. (2020). Optimization method for forecasting confirmed cases of COVID-19 in China. Journal of Clinical Medicine, 9(3), 674.

    Article  Google Scholar 

  30. Gruninger, M., & Lee, J. (2002). Ontology – Applications and Design. Communications of the ACM, 45(2), 39–41.

    Article  Google Scholar 

  31. Uschold, M., & Jasper, R. (1999). A framework for understanding and classifying ontology applications. In Proceedings of the IJCAI-99 workshop on ontologies and problem- solving methods (KRR5) (pp. 1–11). Stockholm, Sweden.

    Google Scholar 

  32. Maedche, A., & Staab, S. (2001). Ontology learning for the Semantic Web. IEEE Intelligent Systems, 16(2), 72–79.

    Article  Google Scholar 

  33. Mao, M. (2008). Ontology mapping: Towards semantic interoperability in distributed and heterogeneous environments. Ph.D. dissertation, Pittsburgh University, Pittsburgh, PA.

    Google Scholar 

  34. Fortino, G., Parisi, D., Pirrone, V., & Di Fatta, G. (2014). BodyCloud: A SaaS approach for community body sensor networks. Future Generation Computer Systems, 35, 62–79.

    Article  Google Scholar 

  35. Shvaiko, P., & Euzenat, J. (2013). Ontology matching: State of the art and future challenges. IEEE Trans on Knowledge and Data Engineering, 25(1), 158–176.

    Article  Google Scholar 

  36. Niles, I., & Pease, A. (2001). Towards a standard upper ontology. In Proceedings of the 2nd international conference on formal ontology in information systems (FOIS- 2001) (Vol. 2001, pp. 2–9).

    Google Scholar 

  37. El-Sappagh, S., Franda, F., Ali, F., & Kwak, K.-S. (2018). SNOMED CT standard ontology based on the ontology for general medical science. BMC Medical Informatics and Decision Making. Article number: 76.

    Google Scholar 

  38. Buitelaar, P., Cimiano, P., Grobelnik, M., & Sintek, M. (2005, October). Ontology learning from text, tutorial at ECML/PKDD, Porto.

    Google Scholar 

  39. Aleksovski, Z., Klein, M., Ten Kate, W., & van Harmelen, F. (2006). Matching unstructured vocabularies using a background Ontology. In Proceedings of knowledge engineering and knowledge management (EKAW) (pp. 182–197).

    Google Scholar 

  40. Lopez, V., Uren, V., Motta, E., & Pasin, M. (2007). Aqua Log: An ontology-driven question answering system for organizational semantic intranets. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2), 72–105.

    Article  Google Scholar 

  41. Tablan, V., Damljanovi, D., & Bontcheva, K. (2008). A natural language query interface to structured information. In The semantic web: Research and applications, LNCS 5021 (pp. 361–375). Springer.

    Chapter  Google Scholar 

  42. Dasgupta, S., Patel, R., Padia, A., & Shah, K. (2013). Description logics-based formalization of Wh- queries, CoRRabs. 1312.6948.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shitharth, S., Mohammad, G.B., Sangeetha, K. (2021). Predicting Epidemic Outbreaks Using IOT, Artificial Intelligence and Cloud. In: Siarry, P., Jabbar, M., Aluvalu, R., Abraham, A., Madureira, A. (eds) The Fusion of Internet of Things, Artificial Intelligence, and Cloud Computing in Health Care. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-75220-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75220-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75219-4

  • Online ISBN: 978-3-030-75220-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics